首页> 外文学位 >Metabolic Engineering of Escherichia coli for the Synthesis of Defined Polyhydroxyalkanoates from Unrelated Feedstocks.
【24h】

Metabolic Engineering of Escherichia coli for the Synthesis of Defined Polyhydroxyalkanoates from Unrelated Feedstocks.

机译:大肠埃希氏菌的代谢工程,用于从无关的原料合成确定的聚羟基链烷酸酯。

获取原文
获取原文并翻译 | 示例

摘要

The global challenges of sustainability and environmental preservation demand solutions that tap into renewable resources and avoid the need for petroleum derived fuels and chemicals. This thesis addresses the above challenges by applying synthetic biology techniques to the synthesis of a naturally occurring class of polyesters known as polyhydroxyalkanoates (PHA). PHA are synthesized by microorganisms as a form of carbon and energy storage. Today, PHA are produced at small-scale industrial facilities around the world. However, PHA face a number of obstacles to commercial adoption. First, PHA are sold at a significant premium to traditional plastics. Second, while PHA can be incorporated directly into various plastic products, the physical properties of the current generation of PHA limit usage to a narrow marketplace. To reduce the cost of production and expand the applications of PHA, strategies were developed for synthesizing novel PHA from inexpensive, renewable feedstocks.;This thesis explores how synthetic biology can be applied to renewable plastic production. Chapter 2 reviews existing biosynthetic routes to PHA from unrelated carbon sources and updates the diverse list of monomers incorporated into PHA since 1995. Next, two alternative strategies for producing PHA monomers are proposed – involving either fatty acid metabolism or polyketide biosynthesis. Chapter 3 describes a thioesterase-based strategy for producing mcl-PHA with a defined composition that circumvents the iterative nature of fatty acid metabolism. Chapter 4 describes PHA production involving type I polyketide synthases, a class of multi-functional enzymes that synthesize their products in a predictable, assembly-line fashion. Previous research has demonstrated the possibility of modifying polyketide synthases to produce novel products. Therefore, a strategy was explored for the polyketide-based production of novel PHA precursors. Finally, Chapter 5 discusses the potential for further improvements in PHA biosynthesis. In summary, this thesis explores routes to tailor-made PHA that begin with inexpensive, renewable substrates in hopes of both reducing the cost of industrial PHA biosynthesis and expanding the applications of this class of biodegradable polyesters.
机译:可持续性和环境保护的全球挑战要求采用可再生资源并避免使用石油衍生燃料和化学品的解决方案。本论文通过将合成生物学技术应用于天然存在的一类称为聚羟基链烷酸酯(PHA)的聚酯的合成,解决了上述挑战。 PHA是由微生物以碳和能量存储的形式合成的。如今,PHA在世界各地的小型工业设施中生产。但是,PHA在商业采用方面面临许多障碍。首先,PHA的销售价格大大高于传统塑料。其次,虽然PHA可以直接掺入各种塑料产品中,但当前一代PHA的物理特性将其使用范围限制在狭窄的市场中。为了降低生产成本并扩大PHA的应用,开发了从廉价的可再生原料合成新型PHA的策略。本论文探讨了如何将合成生物学应用于可再生塑料的生产。第2章回顾了从不相关的碳源到PHA的现有生物合成路线,并更新了自1995年以来掺入PHA的各种单体清单。接下来,提出了两种生产PHA单体的替代策略-涉及脂肪酸代谢或聚酮化合物的生物合成。第3章介绍了一种基于硫酯酶的策略,用于生产具有确定成分的mcl-PHA,该成分可规避脂肪酸代谢的迭代性质。第4章介绍了涉及I型聚酮化合物合酶的PHA生产,这是一类多功能酶,以可预测的流水线方式合成其产物。先前的研究表明,修饰聚酮化合物合酶以生产新产品的可能性。因此,探索了一种基于聚酮化合物的新型PHA前体生产方法。最后,第5章讨论了进一步改善PHA生物合成的潜力。总之,本文探索了以廉价,可再生的底物开始的定制PHA的途径,希望既可以降低工业PHA生物合成的成本,又可以扩大此类可生物降解聚酯的应用。

著录项

  • 作者

    Agnew, Daniel E.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Molecular.;Engineering Chemical.;Biology Microbiology.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号