首页> 外文学位 >Coronal shock acceleration and heliospheric transport of solar energetic protons.
【24h】

Coronal shock acceleration and heliospheric transport of solar energetic protons.

机译:日冕冲击加速和太阳高能质子的日球运输。

获取原文
获取原文并翻译 | 示例

摘要

Solar flares and coronal mass ejections (CME) in the Sun's atmosphere produce highly energetic charged particles during violent bursts of activity. Protons, the most numerous and important species of these solar energetic particles (SEP), accelerate and propagate throughout the heliosphere, probing the interplanetary transport conditions. They also present a significant radiation hazard to space operations. Nevertheless, SEP acceleration in the low corona is currently not well constrained and poorly understood.;In this dissertation, I examine off-limb extreme ultraviolet (EUV) wave dynamics between 1.3 and 2.0 solar radii in the corona, and I show that the EUV signatures are consistent with CME-driven shocks. Therefore, such shocks may form very low in the corona. I also develop a data-driven model for estimating the maximum energy to which protons may be accelerated in coronal shocks. I apply it to an observed shock and show that it may accelerate protons up to tens of MeV during its fast coronal passage, consistent with in-situ observations.;To explore further coronal SEP acceleration by CME-driven shocks, I modify a global, 3D numerical model for interplanetary SEP transport for the coronal conditions, and adapt it to incorporate results from a realistic magnetohydrodynamic coronal and CME model. Furthermore, I apply a diffusive shock acceleration model, which explicitly treats proton energization at traveling shocks, to an MHD simulation of a real CME event. I find that the source population becomes strongly accelerated. In addition, I simulate the proton transport between the Sun and Earth, and find that the modeled fluxes are consistent with particle observations near Earth. Results suggest that CME-driven shocks in the corona may be the primary source of SEPs in solar storms. In addition, conditions along coronal shock fronts vary greatly, influencing the amount of acceleration.;Finally, I model the global proton transport between Earth and 5 AU during a very large SEP event. I obtain radial gradients of peak fluxes and radiation doses for space weather applications, and I find that simulated and observed fluxes agree reasonably well. This suggests that most CME shocks are not efficient proton accelerators beyond 1 AU.
机译:在剧烈的活动爆发期间,太阳大气中的太阳耀斑和日冕物质抛射(CME)产生高能的带电粒子。质子是这些太阳高能粒子(SEP)中数量最多,最重要的种类,它在整个太阳圈中加速并传播,从而探测了行星际运输条件。它们还对太空运行造成严重的辐射危害。尽管如此,目前对低电晕的SEP加速还没有很好的约束,并且了解得很少。在本文中,我研究了电晕在1.3至2.0太阳半径之间的离岸极紫外(EUV)波动力学,并证明了EUV签名与CME驱动的冲击一致。因此,这种冲击在电晕中可能会非常低。我还开发了一个数据驱动的模型,用于估计在日冕冲击中质子可能加速传播的最大能量。我将其应用于观察到的电击,并表明它可以在快速的日冕通过过程中将质子加速至数十MeV,这与原位观察一致。为了探索CME驱动的电击进一步推动日冕SEP,我修改了一个整体,用于日冕条件的行星际SEP传输的3D数值模型,并将其修改为合并现实的磁流体动力日冕和CME模型的结果。此外,我将扩散激波加速模型应用于真实CME事件的MHD模拟,该模型明确处理了行进冲击时的质子激发。我发现来源人口迅速增加。此外,我模拟了质子在太阳和地球之间的传输,发现模拟的通量与在地球附近的粒子观测结果一致。结果表明,CME驱动的日冕电击可能是太阳风暴中SEP的主要来源。此外,日冕激波前沿的条件变化很大,影响了加速度。最后,我在一个非常大的SEP事件中模拟了地球与5 AU之间的全球质子传输。对于太空天气应用,我获得了峰值通量和辐射剂量的径向梯度,并且发现模拟和观察到的通量相当吻合。这表明大多数CME冲击不是超过1 AU的有效质子加速器。

著录项

  • 作者

    Kozarev, Kamen Asenov.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Physics Astrophysics.;Physics Astronomy and Astrophysics.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号