首页> 外文学位 >Energy reduction through voltage scaling and lightweight checking.
【24h】

Energy reduction through voltage scaling and lightweight checking.

机译:通过电压缩放和轻量级检查来降低能耗。

获取原文
获取原文并翻译 | 示例

摘要

As the semiconductor roadmap reaches smaller feature sizes and the end of Dennard Scaling, design goals change, and managing the power envelope often dominates delay minimization. Voltage scaling remains a powerful tool to reduce energy. We find that it results in about 60% geomean energy reduction on top of other common low-energy optimizations with 22nm CMOS technology. However, when voltage is reduced, it becomes easier for noise and particle strikes to upset a node, potentially causing Silent Data Corruption (SDC). The 60% energy reduction, therefore, comes with a significant drop in reliability. Duplication with checking and triple-modular redundancy are traditional approaches used to combat transient errors, but spending 2--3x the energy for redundant computation can diminish or reverse the benefits of voltage scaling. As an alternative, we explore the opportunity to use checking operations that are cheaper than the base computation they are guarding. We devise a classification system for applications and their lightweight checking characteristics. In particular, we identify and evaluate the effectiveness of lightweight checks in a broad set of common tasks in scientific computing and signal processing. We find that the lightweight checks cost only a fraction of the base computation (0-25%) and allow us to recover the reliability losses from voltage scaling. Overall, we show about 50% net energy reduction without compromising reliability compared to operation at the nominal voltage. We use FPGAs (Field-Programmable Gate Arrays) in our work, although the same ideas can be applied to different systems. On top of voltage scaling, we explore other common low-energy techniques for FPGAs: transmission gates, gate boosting, power gating, low-leakage (high-Vth) processes, and dual-V dd architectures.;We do not scale voltage for memories, so lower voltages help us reduce logic and interconnect energy, but not memory energy. At lower voltages, memories become dominant, and we get diminishing returns from continuing to scale voltage. To ensure that memories do not become a bottleneck, we also design an energy-robust FPGA memory architecture, which attempts to minimize communication energy due to mismatches between application and architecture. We do this alongside application parallelism tuning. We show our techniques on a wide range of applications, including a large real-time system used for Wide-Area Motion Imaging (WAMI).
机译:随着半导体路线图达到更小的特征尺寸以及Dennard Scaling的终结,设计目标发生了变化,并且管理功率封套通常会主导最小化延迟。电压缩放仍然是减少能耗的强大工具。我们发现,使用22nm CMOS技术进行的其他常见的低能耗优化之外,它可将几何平均能耗降低约60%。但是,当电压降低时,噪声和粒子撞击将更容易使节点崩溃,从而可能导致静默数据损坏(SDC)。因此,将能耗降低60%会大大降低可靠性。具有校验和三重模块冗余的复制是用于解决瞬态错误的传统方法,但是花费2--3倍的能量进行冗余计算可以减少或逆转电压缩放的好处。作为替代方案,我们探索了使用比其所保护的基础计算便宜的检查操作的机会。我们为应用程序及其轻量级检查特性设计了一个分类系统。特别是,我们在科学计算和信号处理的一系列常见任务中,确定并评估轻量级检查的有效性。我们发现,轻量级检查仅花费基本计算的一小部分(0-25%),并使我们能够从电压缩放中恢复可靠性损失。总体而言,与在标称电压下运行相比,我们展示了约50%的净能耗降低,而不会损害可靠性。我们可以在工作中使用FPGA(现场可编程门阵列),尽管相同的想法可以应用于不同的系统。除了电压缩放以外,我们还探索了FPGA的其他常见低功耗技术:传输门,栅极升压,功率门控,低泄漏(high-Vth)工艺和双V dd架构。存储器,因此较低的电压有助于我们减少逻辑和互连能量,但不能降低存储器能量。在较低的电压下,存储器将成为主导,并且由于持续扩展电压,我们得到的回报越来越小。为了确保存储器不会成为瓶颈,我们还设计了一种节能的FPGA存储器架构,该架构试图将由于应用程序和架构之间的不匹配而导致的通信能量降至最低。我们在进行应用程序并行性调整的同时进行此操作。我们将在广泛的应用程序中展示我们的技术,包括用于广域运动成像(WAMI)的大型实时系统。

著录项

  • 作者

    Kadric, Edin.;

  • 作者单位

    University of Pennsylvania.;

  • 授予单位 University of Pennsylvania.;
  • 学科 Electrical engineering.;Energy.;Computer engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 210 p.
  • 总页数 210
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号