首页> 外文学位 >Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals.
【24h】

Lyotropic chromonic liquid crystals: From viscoelastic properties to living liquid crystals.

机译:溶致色团液晶:从粘弹性质到活性液晶。

获取原文
获取原文并翻译 | 示例

摘要

Lyotropic chromonic liquid crystal (LCLC) represents a broad range of molecules, from organic dyes and drugs to DNA, that self-assemble into linear aggregates in water through face-to-face stacking. These linear aggregates of high aspect ratio are capable of orientational order, forming, for example nematic phase. Since the microscopic properties (such as length) of the chromonic aggregates are results of subtle balance between energy and entropy, the macroscopic viscoelastic properties of the nematic media are sensitive to change of external factors. In the first part of this thesis, by using dynamic light scattering and magnetic Frederiks transition techniques, we study the Frank elastic moduli and viscosity coefficients of LCLC disodium cromoglycate (DSCG) and sunset yellow (SSY) as functions of concentration c , temperature T and ionic contents. The elastic moduli of splay (K1) and bend (K3) are in the order of 10pN, about 10 times larger than the twist modulus (K2). The splay modulus K1 and the ratio K1/K3 both increase substantially as T decreases or c increases, which we attribute to the elongation of linear aggregates at lower T or higher c . The bend viscosity is comparable to that of thermotropic liquid crystals, while the splay and twist viscosities are several orders of magnitude larger, changing exponentially with T . Additional ionic additives into the system influence the viscoelastic properties of these systems in a dramatic and versatile way. For example, monovalent salt NaCl decreases bend modulus K3 and increases twist viscosity, while an elevated pH decreases all the parameters. We attribute these features to the ion-induced changes in length and flexibility of building units of LCLC, the chromonic aggregates, a property not found in conventional thermotropic and lyotropic liquid crystals form by covalently bound units of fixed length. The second part of the thesis studies a new active bio-mechanical hybrid system called living liquid crystal (LLC), constructed by mixing LCLC with self-propelled microorganism, bacteria strain called Bacillus subtilis . The coupling between bacterial flow and the nematic long-rang order of the LCLC matrix results in a wealth of intriguing dynamic phenomena, among which are 1) programmable trajectories of bacterial motion guided by patterned director field, 2) cargo particle transportation along such trajectories, 3) local melting of the liquid crystal caused by the bacteria-produced shear flow, 4) birefringence-enabled visualization of microflow generated by nanometer-thick bacterial flagella and 5) activity triggered transition from non-flow uniform state into a flowing one-dimensional pattern and its evolution into a turbulent array of topological defects. In addition, due to the long-rang elastic interaction mediated by the nematic matrix, LLC shows collective dynamics at very low fraction of bacteria, on the order of 0.2%, about 1/10 of bacteria fraction needed in isotropic media for collective motion. Our work suggests an unorthodox design concept to control and manipulate the dynamic behavior of soft active matter and opens the door for potential biosensing and biomedical applications.
机译:溶致变色液晶(LCLC)代表了从有机染料,药物到DNA的各种分子,它们通过面对面堆叠在水中自组装成线性聚集体。这些高纵横比的线性聚集体能够取向例如形成向列相。由于发色团聚体的微观性质(如长度)是能量和熵之间微妙平衡的结果,因此向列介质的宏观粘弹性对外界因素的变化很敏感。在本文的第一部分,我们使用动态光散射和磁性Frederiks跃迁技术,研究了LCLC色甘酸二钠(DSCG)和日落黄(SSY)的Frank弹性模量和粘度系数与浓度c,温度T和离子含量。展开(K1)和弯曲(K3)的弹性模量约为10pN,约为扭转模量(K2)的10倍。随T降低或c增加,开裂模量K1和比率K1 / K3均显着增加,这归因于在较低T或较高c下线性聚集体的伸长。弯曲粘度可与热致液晶相媲美,而张开和扭曲粘度则大几个数量级,并随T呈指数变化。进入系统的其他离子添加剂以戏剧性和通用的方式影响这些系统的粘弹性。例如,一价盐NaCl降低弯曲模量K3并增加扭曲粘度,而升高的pH值则会降低所有参数。我们将这些特征归因于离子诱导的LCLC建筑单元长度和柔韧性的变化,发色团聚体,这是通过固定长度的共价键合单元形成的传统热致和溶致液晶所没有的特性。论文的第二部分研究了一种新的主​​动生物力学混合系统,称为活液晶(LLC),该系统是通过将LCLC与自走式微生物枯草芽孢杆菌(Bacillus subtilis)菌株混合而构建的。细菌流动与LCLC矩阵的向列远距离顺序之间的耦合导致了许多有趣的动力学现象,其中包括:1)由图案化指向矢场引导的细菌运动的可编程轨迹; 2)沿着这种轨迹的货物颗粒运输, 3)由细菌产生的剪切流引起的液晶的局部融化; 4)纳米级细菌鞭毛产生的微流的双折射可视化; 5)活性触发了从非流动均匀状态到流动一维状态的转变模式及其演变成湍流的拓扑缺陷阵列。另外,由于向列基体介导的长距离弹性相互作用,LLC在非常低的细菌比例(约0.2%)下显示出集体动力学,在各向同性介质中集体运动所需的细菌比例约为1/10。我们的工作提出了一种非传统的设计概念来控制和操纵软活性物质的动态行为,并为潜在的生物传感和生物医学应用打开了大门。

著录项

  • 作者

    Zhou, Shuang.;

  • 作者单位

    Kent State University.;

  • 授予单位 Kent State University.;
  • 学科 Physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号