首页> 外文学位 >Electromagnetic simulations of active and nonlinear photonic devices.
【24h】

Electromagnetic simulations of active and nonlinear photonic devices.

机译:有源和非线性光子器件的电磁仿真。

获取原文
获取原文并翻译 | 示例

摘要

Computational simulation has been an essential tool for modeling integrated photonic devices, and in providing design insights for improving their performance. Due to an extensive growth in the computational resources available to contemporary optical scientists, rigorous and comprehensive numerical algorithms, which in the past had been too computationally demanding to be of much practical use, are now easily implemented even on a desktop computer. Through the application of one such rigorous algorithm, the Finite-Difference Time-Domain (FDTD) method, this dissertation models two important components of integrated photonics: modelocked Vertical Cavity Surface Emitting Lasers (VCSELs) and nonlinear Photonic Crystals (PCs). Furthermore, an implementation of the plane wave expansion (PWE) numerical technique, which includes in a self-consistent way the changes in the refractive index caused by Kerr-nonlinear effects, is also presented. This technique is useful for computing photonic band structures in nonlinear PCs and for accurately determining wave propagation in PCs, in the regime where they are strongly dispersive.An approach based on the FDTD method, which is extended to incorporate active-dispersive material, is developed for simulating the dynamics of VCSELs. The material response is incorporated in our FDTD algorithm by the effective semiconductor Bloch equations, and its effects are accounted for through a resonant polarization term in the Maxwell's equations. Moreover, nonlinear gain saturation is incorporated through a gain suppression factor in the equation governing the dynamics of the resonant polarization. This approach is verified by modeling a lambda-cavity VCSEL, with a multiple quantum well (MQW) gain region the corresponding continuous-wave operation is obtained at the expected wavelength. The dynamics of ultrashort pulses generated by a monolithic passively modelocked one dimensional VCSEL with a MQW gain region and a single quantum well saturable absorber are studied and it is demonstrated that a stable modelocked pulse train can be generated. It is also demonstrated that with our FDTD approach sub-cycle temporal precision can be achieved. The need for this fine temporal resolution is established by investigating pulse propagation through the semiconductor saturable absorber. Fine features of the spatial profile of the modelocked pulses are also examined within this approach. (Abstract shortened by UMI.)
机译:计算仿真已成为建模集成光子设备以及提供设计见解以改善其性能的重要工具。由于当代光学科学家可利用的计算资源大量增加,过去对计算过于苛刻而无法实际应用的严格而全面的数值算法现在甚至可以在台式计算机上轻松实现。通过应用一种严格的时域有限差分法(FDTD),本文对集成光子学的两个重要组成部分进行了建模:锁模垂直腔表面发射激光器(VCSEL)和非线性光子晶体(PC)。此外,还提出了一种平面波扩展(PWE)数值技术的实现,该技术以自洽的方式包括由Kerr非线性效应引起的折射率变化。该技术可用于计算非线性PC中的光子能带结构,并能准确地确定PC在强色散状态下的波传播。基于FDTD方法的方法被扩展为包含活性色散材料用于模拟VCSEL的动态。物质响应通过有效的半导体Bloch方程纳入了FDTD算法,其影响通过麦克斯韦方程中的共振极化项来解释。此外,在控制谐振极化动力学的方程式中,通过增益抑制因子并入了非线性增益饱和。通过对具有多量子阱(MQW)增益区域的λ腔VCSEL建模,可以验证该方法,从而可以在预期的波长下获得相应的连续波操作。研究了具有MQW增益区域和单量子阱可饱和吸收器的整体式被动对接一维VCSEL产生的超短脉冲的动力学,并证明了可以产生稳定的对接超脉冲。还证明了使用我们的FDTD方法可以实现子周期的时间精度。通过研究穿过半导体可饱和吸收器的脉冲传播,建立了对这种精细的时间分辨率的需求。在此方法中,还检查了锁模脉冲空间分布的精细特征。 (摘要由UMI缩短。)

著录项

  • 作者

    Bahl, Mayank.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号