首页> 外文学位 >Signal processing tools for MRI perfusion-weighted imaging data analysis.
【24h】

Signal processing tools for MRI perfusion-weighted imaging data analysis.

机译:用于MRI灌注加权成像数据分析的信号处理工具。

获取原文
获取原文并翻译 | 示例

摘要

In dynamic susceptibility contrast (DSC) magnetic resonance (MR) approaches, by injecting a bolus of paramagnetic contrast agent intravenously, the measured MR signal is converted to a concentration time course to estimate hemodynamic parameters like cerebral blood flow (CBF), cerebral blood volume (CBV) and mean transit time (MTT).; Before estimating hemodynamic parameters, recirculation effects need to be removed by a gamma-variate fit of the concentration curve. In this dissertation, however, it has been found and demonstrated by simulation that fitting may not discern recirculation from the first-pass in case of cerebral ischemia. A new methodology using temporal independent component analysis (ICA) to remove recirculation in both normal and ischemic brain tissues while preserving the first-pass is therefore proposed. This should improve hemodynamics accuracy particularly in ischemic lesions.; In DSC MR approaches, bolus delays between the arterial input function (AIF) and tissue curves may induce significant CBF quantification error. Our second contribution is using ICA to estimate bolus arrival time for each 5 x 5 region of interest (ROI) throughout the brain parenchyma. A global AIF measured from a major artery can then be shifted in accordance to define a local AIF for each ROI. The bolus delay may therefore be minimized, and the general shape of the AIF is preserved. This should improve the flow quantification.; Transfer function has been widely used to characterize an unknown system. In DSC MR approaches, vascular transfer function (VTF) represents the probability density function of the vascular transit time. Our third contribution is to propose a new tool to estimate intracranial VTF non-invasively. This should provide an alterative means of assessing tissue perfusion status, particularly in patients with cerebrovascular diseases.; Bolus dispersion between the AIF and tissue curves may induce flow quantification error, which cannot be minimized without the knowledge of vasculature. Our final contribution is to develop an extended cerebral vascular model to minimize delay and dispersion dependence by modelling flow heterogeneity in both bulk small arteries and capillary bed. This should yield more stable flow rates less sensitive to bolus delay and dispersion.
机译:在动态磁化造影(DSC)磁共振(MR)方法中,通过静脉内注射顺磁性造影剂,将测得的MR信号转换为浓度时程,以估算血液动力学参数,例如脑血流量(CBF),脑血容量(CBV)和平均通过时间(MTT)。在估算血液动力学参数之前,需要通过浓度曲线的伽玛变量拟合消除再循环效应。然而,在本文中,已经通过模拟发现并证明了拟合可能无法在脑缺血的情况下从第一次通过中识别出再循环。因此,提出了一种新的方法,该方法使用时间独立成分分析(ICA)来消除正常和缺血性脑组织中的再循环,同时保留首过通道。这将改善血液动力学的准确性,尤其是在缺血性病变中。在DSC MR方法中,动脉输入功能(AIF)与组织曲线之间的推注延迟可能会导致明显的CBF量化误差。我们的第二项贡献是使用ICA估计整个脑实质中每个5 x 5感兴趣区域(ROI)的推注到达时间。然后可以根据从每个大动脉测量的总AIF定义每个ROI的局部AIF。推注延迟因此可以被最小化,并且AIF的总体形状得以保留。这将改善流量定量。传递函数已被广泛用于表征未知系统。在DSC MR方法中,血管传递函数(VTF)表示血管传递时间的概率密度函数。我们的第三项贡献是提出了一种新的工具来无创地评估颅内VTF。这应该提供一种评估组织灌注状态的替代方法,尤其是在脑血管疾病患者中。 AIF和组织曲线之间的团分散可能会引起流量量化误差,如果不了解脉管系统,就无法将其最小化。我们的最终贡献是通过对散装小动脉和毛细血管床中的血流异质性进行建模,开发出扩展的脑血管模型,以最大程度地减少延迟和弥散依赖性。这将产生更稳定的流速,对推注延迟和分散不敏感。

著录项

  • 作者

    Wu, Yang.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号