首页> 外文学位 >Longitudinal phase space measurements and application to beam-plasma physics.
【24h】

Longitudinal phase space measurements and application to beam-plasma physics.

机译:纵向相空间测量及其在束等离子体物理中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Beam driven plasma wakes show great promise for meter scale accelerators with high gradients. Plasma wakefield theory indicates that the achievable gradient is proportional to N/s2z , and the bunches as short as 12 mum ≈ 40 fsec in RMS length which are now possible at the Stanford Linear Accelerator Center (SLAC) are predicted to allow gradients in the tens to hundreds of GeV/m. We discuss the three stages of compression needed to achieve such short bunches.; No technique currently available can measure these longitudinal profiles directly shot by shot, requiring an indirect method. We added a magnetic chicane near the end of SLAC's 3 km main accelerator to measure the energy spread of each bunch in a non-destructive manner. Additionally, we performed a series of detailed simulations of the main accelerator in LiTrack, a code developed at SLAC. By comparing each measured spectrum against the library of spectra from simulations, we can find the best match to determine the input conditions to the accelerator and the total longitudinal phase space of every shot in the machine.; We discuss several methods employed to verify that the longitudinal profiles coming from simulations are accurate. We can use this information to understand which particles are accelerated in each bunch, and by how much. Additionally, we use the longitudinal information to choose a subset of shots that always have the same incoming profiles to see the differing acceleration experienced by those shots as we vary the plasma density and length. This allows a more robust calculation of achieved gradient, as well as illuminating the effect of transverse deflections on that acceleration.; Finally, we discuss other applications, as the technique for measuring the energy spectra and for matching to simulations is quite general.
机译:束流驱动的等离子尾波显示出具有高梯度的米级加速器的巨大前景。等离子体尾场理论表明,可达到的梯度与N / s2z成正比,并且束短至12 map。预计现在在斯坦福线性加速器中心(SLAC)可以实现40 fsec的RMS长度,从而允许数十至数百GeV / m的梯度。我们讨论了实现这些短串所需的三个压缩阶段。当前没有可用的技术可以直接测量这些纵向轮廓,而需要间接方法。我们在SLAC 3公里主加速器的末端附近添加了一个磁锥,以无损方式测量每束能量的散布。此外,我们在LiTrack(SLAC开发的代码)中对主加速器进行了一系列详细的模拟。通过将每个测得的频谱与仿真中的频谱库进行比较,我们可以找到最佳匹配,以确定加速器的输入条件以及机器中每个镜头的总纵向相空间。我们讨论了几种用于验证来自模拟的纵向轮廓是否准确的方法。我们可以使用此信息来了解哪些粒子在每个束中被加速了多少。另外,我们使用纵向信息来选择始终具有相同入射轮廓的子集子集,以查看随着我们改变等离子体密度和长度而这些子集经历的不同加速度。这样就可以更可靠地计算出所获得的梯度,并阐明横向偏转对该加速度的影响。最后,我们讨论了其他应用程序,因为用于测量能谱和与模拟匹配的技术非常普遍。

著录项

  • 作者

    Barnes, Christopher Dwight.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Fluid and Plasma.; Physics Elementary Particles and High Energy.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 等离子体物理学;高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号