首页> 外文学位 >Fabrication and characterization of nanoscale molecular electronic devices.
【24h】

Fabrication and characterization of nanoscale molecular electronic devices.

机译:纳米级分子电子器件的制备和表征。

获取原文
获取原文并翻译 | 示例

摘要

Current CMOS technology is rapidly approaching the physical limits of transistor scaling. These limits may be overcome by using nanometer-size organic molecules as functional units to transfer electrons in nanoscale devices. Organic molecules offer several advantages over conventional CMOS technology: smaller size, easy synthesis procedure, tailor-ability and finally, the ability to self-assemble on a metal substrate. Despite these advantages, the molecular electronic circuit remains a distant reality. The challenges remain in identifying molecules with potential device applications, understanding the electrical behaviors of these molecules and integrating the molecular devices into a usable circuit. In this dissertation, a nanowell test structure for the characterization of a metal-molecule-metal junction was fabricated. We proved the effectiveness of the nanowell test structure by testing different chain length of alkanethiol molecules and comparing the experimental results with the literature values. Switching with memory behavior that may have a potential application in memory devices was observed in our nanowell device from an oligo (phenylene ethnylene) (OPE) molecule with a nitro side group, commonly known as the nitro molecule. Various important switching parameters such as threshold voltages, yield of working devices, median current values and on-off ratios were reported in this dissertation. The nitro molecule was also tested in various environments and the switching behavior was found to be dependent on the molecular environments. The observed switching behavior was attributed to the conformation change of the nitro functional group, stabilized by the molecular interactions. A possible application of the switching behavior observed from the nitro molecules may be in a crossbar memory array. However, integrating the molecular electronic devices into a crossbar circuit is a difficult challenge to the scientific community. In this dissertation, the fabrication challenges were overcome and a 3x3 crossbar molecular electronic circuit was demonstrated.
机译:当前的CMOS技术正在迅速接近晶体管缩放的物理极限。通过使用纳米级有机分子作为功能单元在纳米级设备中转移电子,可以克服这些限制。与传统的CMOS技术相比,有机分子具有几个优势:更小的尺寸,易于合成的过程,可定制的能力以及最终在金属基板上自组装的能力。尽管具有这些优点,但是分子电子电路仍然是遥不可及的现实。在识别具有潜在器件应用的分子,理解这些分子的电行为以及将分子器件集成到可用电路中时,挑战仍然存在。本文制备了一种表征金属-分子-金属连接的纳米孔测试结构。我们通过测试链烷硫醇分子的不同链长并将实验结果与文献值进行比较,证明了纳米孔测试结构的有效性。在我们的纳米孔设备中,观察到由具有硝基侧基的低聚(亚苯基亚乙基)(OPE)分子(通常称为硝基分子)引起的具有可能在存储设备中潜在应用的存储行为的切换。本文报道了各种重要的开关参数,例如阈值电压,工作装置的产量,中值电流值和开关比。还在各种环境中测试了硝基分子,发现其转换行为取决于分子环境。观察到的转换行为归因于硝基官能团的构象变化,其通过分子相互作用而稳定。从硝基分子观察到的转换行为的可能应用可以在交叉存储阵列中。但是,将分子电子器件集成到纵横电路中对科学界来说是一个艰巨的挑战。本文克服了制造上的挑战,并演示了3x3纵横制分子电子电路。

著录项

  • 作者

    Majumdar, Nabanita.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号