首页> 外文学位 >Molecular level studies of hydration phenomena relevant to biological self-assembly processes.
【24h】

Molecular level studies of hydration phenomena relevant to biological self-assembly processes.

机译:与生物自组装过程有关的水合现象的分子水平研究。

获取原文
获取原文并翻译 | 示例

摘要

The biological structure, stability and function of biomolecules and biomolecular assemblies in aqueous solutions are governed predominately by the unique structural and thermodynamic properties of water. This thesis focuses primarily on the theoretical and computational studies of hydration of solutes in solution. In particular, hydration thermodynamics of solutes in aqueous solutions is mapped extensively as a function of the size and charge of the solute, and different solution conditions such as temperature, pressure, and the presence of additives. This work not only builds a fundamental understanding of solvation phenomena in condensed matter, but also provides useful insights into the role of key intermolecular interactions that drive biological self-assembly.; Hydrophobic and ionic interactions together comprise the key stabilizing forces for self-assembly. Here, exhaustive studies are presented of the hydration of solutes as a function of their geometry and chemistry and in different solutions conditions. In each case, the importance of the molecular nature of water to the thermodynamics of macroscopic processes is highlighted. For example, the molecular nature of water results in disparate hydration physics for small nonpolar solutes as compared to large hydrophobic interfaces. Similarly, the asymmetry in ionic hydration with respect to the charging direction is also connected to the molecular nature of water and the inherently asymmetric charge distribution on the water molecule itself. The significance of this asymmetry is indeed shown to be related directly to the strength of association of two oppositely charged ions as well, suggesting that ionic hydration studies could be used as a sensitive tool for the parametrization of water models and ion-water interaction potentials applied in biological context.; The studies of hydration and association of simple solutes in solutions are extended to explain macroscopic phenomena relevant to biology by building a molecular volcano plot that captures the ion-ion association strength as a function of the differences in the ionic hydration free energies. Specifically, the stability of micellar structures formed by cationic surfactants as a function of the size of the counter-ions is shown to be consistent with the volcano plot interpretation.
机译:水溶液中生物分子和生物分子组件的生物学结构,稳定性和功能主要受水的独特结构和热力学特性支配。本文主要研究溶液中溶质水合的理论和计算研究。特别地,水溶液中溶质的水合热力学根据溶质的大小和电荷以及不同的溶液条件(例如温度,压力和添加剂的存在)广泛地进行映射。这项工作不仅建立了对凝结物中溶​​剂化现象的基本理解,而且还提供了对驱动生物自组装的关键分子间相互作用的作用的有用见解。疏水和离子相互作用共同构成了自组装的关键稳定力。在此,详尽地研究了溶质的水化作用,它们是其几何形状和化学性质以及在不同溶液条件下的函数。在每种情况下,都强调了水的分子性质对宏观过程热力学的重要性。例如,与大的疏水性界面相比,小非极性溶质的水分子性质导致了完全不同的水合物理学。类似地,离子水合相对于充电方向的不对称性也与水的分子性质以及水分子本身固有的不对称电荷分布有关。实际上,这种不对称的重要性也直接与两个带相反电荷的离子的缔合强度有关,这表明离子水合研究可以用作水模型和离子水相互作用势参数化的敏感工具。在生物学方面。水合和溶液中简单溶质缔合的研究被扩展为解释与生物学有关的宏观现象,方法是建立一个分子火山图,该图捕获离子-缔合强度随离子水合自由能差异而变化的功能。具体地,由阳离子表面活性剂形成的胶束结构的稳定性作为抗衡离子大小的函数显示出与火山图解释一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号