首页> 外文学位 >Analysis and modeling of the biomechanics of brain injury under impact.
【24h】

Analysis and modeling of the biomechanics of brain injury under impact.

机译:冲击下脑损伤的生物力学分析与建模。

获取原文
获取原文并翻译 | 示例

摘要

To better understand brain injury mechanisms and better predict brain injuries under impact, this work focuses on the analysis of experimental brain motion data and the development of brain injury models. An analytical method is used to separate the measured brain motion into rigid body displacement and brain deformation with a minimum total squared error. Under mild impact, it is found that the whole brain has nearly pure rigid body displacement, having a magnitude of 4 to 5 mm in translation and +/-5 degrees in rotation. As the impact becomes more severe, the rigid body displacement is limited in magnitude for both translation and rotation, while the increased brain motion primarily is due to brain deformation, which is largest in the superior region of the brain.; Validated against the experimental brain motion data under low-severity impacts, new lumped-parameter brain injury models are developed to bridge the gap between simplified models that predict brain injuries based only on linear or angular accelerations and more complex finite element models that require complete knowledge of material properties and interface conditions. With proposed metrics for brain injury prediction, the new models are applied to more severe frontal and side impact tests and real-world car-pedestrian accidents. The results show that the new models are capable of predicting various brain injuries due to impact. Verified using a high-fidelity finite element model, sensitivity analysis indicates that the brain injury prediction is most sensitive to the brain moment of inertia, followed by the brain mass.
机译:为了更好地了解脑损伤机制并更好地预测撞击下的脑损伤,这项工作着重于分析实验性脑运动数据和开发脑损伤模型。一种分析方法用于将测得的大脑运动分为刚体位移和大脑变形,而总平方误差最小。在轻微的冲击下,发现整个大脑几乎具有刚体刚体位移,平移幅度为4到5毫米,旋转幅度为+/- 5度。随着冲击变得更加严重,刚体位移在水平方向上的旋转和旋转都受到限制,而增加的大脑运动主要是由于大脑变形,这在大脑的上方区域最大。针对在低严重度影响下的实验性脑运动数据进行了验证,开发了新的集总参数脑损伤模型,以弥合仅基于线性或角加速度来预测脑损伤的简化模型与需要完整知识的更复杂的有限元模型之间的差距材料特性和界面条件。借助拟议的脑损伤预测指标,新模型可用于更严重的正面和侧面碰撞测试以及现实世界中的行人交通事故。结果表明,新模型能够预测由于撞击而导致的各种脑损伤。使用高保真有限元模型进行验证,敏感性分析表明,脑损伤预测对大脑惯性矩最敏感,其次是大脑质量。

著录项

  • 作者

    Zou, Hong.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号