首页> 外文学位 >The quantitative genetics of a Non-Stiff-Stalk maize (Zea mays L.) population.
【24h】

The quantitative genetics of a Non-Stiff-Stalk maize (Zea mays L.) population.

机译:非硬茎玉米(Zea mays L.)种群的数量遗传学。

获取原文
获取原文并翻译 | 示例

摘要

The genetic relationship among individuals is at the core of nearly all quantitative genetic theory. Dominant gene action has long been either ignored or disregarded as insignificant in many previous genetic models. For grain yield in maize (Zea mays L.), dominance has consistently accounted for a large proportion of genetic variance. We have used previously developed genetic theory that accounts for dominance variance during inbreeding and applied it to a unique breeding design. Our breeding design allowed us to estimate five genetic covariance parameters for six traits. In addition, we developed genetic gain equations that accounted for both dominance and inbreeding. We found that the genetic covariance parameters introduced via inbreeding were significant for five traits. Our estimates of the genetic covariance parameters allowed us to predict genetic gain over a range of selection units and response units. Half-sib selection proved superior to inbred progeny selection when the response was measured in the outbred progeny. In addition, the relative proportions of additive and dominance variance influenced the effectiveness of inbred progeny selection. We also showed that even when dominance constitutes a larger proportion of the total genetic variance than additive variance, the loss of additive effects has a greater influence on the decline associated with inbreeding than the addition of homozygous dominance deviations. Our results also indicated that the reason realized gain often falls short of predicted gain is due to the negative covariance between additive effects and homozygous dominance effects. The effect of a negative covariance is that positive gain via additive effects is offset by negative gain via homozygous dominance deviations.
机译:个体之间的遗传关系是几乎所有定量遗传理论的核心。长期以来,在许多以前的遗传模型中,主导基因的作用一直被忽略或忽略不计。对于玉米(Zea mays L.)的谷物产量而言,优势一直在遗传变异中占很大比例。我们使用以前开发的遗传理论解决近交过程中的优势差异,并将其应用于独特的育种设计。我们的育种设计使我们能够估算出六个性状的五个遗传协方差参数。此外,我们开发了同时兼具优势和近亲关系的遗传增益方程。我们发现通过近交引入的遗传协方差参数对于五个性状具有重要意义。我们对遗传协方差参数的估计使我们能够预测一系列选择单元和响应单元的遗传增益。当测量近交后代的反应时,半同胞选择被证明优于自交后代选择。此外,加性和优势变异的相对比例影响了近交后代选择的有效性。我们还表明,即使优势占总遗传方差的比例比加性方差更大,与纯合优势度偏差的增加相比,加性效应的丧失对与近交相关的衰落的影响更大。我们的结果还表明,实现的收益经常低于预期收益的原因是加性效应和纯合优势效应之间的负协方差。负协方差的作用是,通过加性效应获得的正增益会因纯合优势度偏差而被负增益所抵消。

著录项

  • 作者

    Wardyn, Brandon M.;

  • 作者单位

    Iowa State University.;

  • 授予单位 Iowa State University.;
  • 学科 Agriculture Agronomy.; Biology Genetics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农学(农艺学);遗传学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号