首页> 外文学位 >Developmental biomechanics of early vertebrate embryonic tissues.
【24h】

Developmental biomechanics of early vertebrate embryonic tissues.

机译:早期脊椎动物胚胎组织的发育生物力学。

获取原文
获取原文并翻译 | 示例

摘要

Embryonic development involves a fundamental biomechanical process that constructs complicated three-dimensional tissue structures through massive cellular movements. During early gastrulation stages, polarized cell intercalation movements drive the dramatic extension of the Xenopus laevis frog embryo in the anterior-posterior direction. How those individual cellular protrusive forces integrate to produce the bulk force at the tissue level remains unknown. Furthermore, the embryo is shaped not only by active forces, but also by the mechanical properties such as the viscoelastic properties of the constituent tissues. Although rapid progresses have been made to identify the genes or proteins involved in this process, there is much less known about mechanical roles of the genes and proteins in the process. By investigating the contribution of subcellular-, cellular-, and tissue-level structures to the tissue mechanical properties, we found that, on the tissue-level, there were large temporal and spatial variation in tissue stiffness of dorsal isolates and the stiffness was largely dependent on paraxial mesoderm tissues, while notochord tissue, which has been proposed to support the early embryos, was not a major contributor to the tissue mechanics. On the cellular-level, the mechanical properties of dorsal isolates were mainly dependent on cells, but not their ECM. On the subcellular-level, the mechanical properties of the embryonic cells were determined by actin and myosin II contractility, while microtubules indirectly controlled the tissue stiffness by regulating actomyosin network through a Rho-GEF mediated signaling pathway. In order to measure the tissue extension forces, we developed a high throughput technique combining imaging techniques and finite element models. Using this technique, we identified two cases of mechanical adaptation. In the first case we found that dorsal axial tissues generated less force to compensate for their own lower mechanical resistance. In the second we found that dorsal axial tissues encountering a stiffer environment were capable of generating nearly 2-fold greater force. These cases of adaptation demonstrate that force production is quantitatively balanced during CE and that the mechanisms responsible for this adaptation are able to ensure robust morphogenesis against environmental and genetic variation in physical force production and tissue stiffness.
机译:胚胎发育涉及一个基本的生物力学过程,该过程通过大量的细胞运动来构建复杂的三维组织结构。在早期胃化阶段,极化的细胞插入运动驱动非洲爪蟾蛙胚胎在前后方向上的急剧延伸。这些个体细胞的突出力如何整合以在组织水平上产生体力仍是未知的。此外,胚胎不仅通过作用力来成形,而且还通过诸如组织的机械特性例如粘弹性特性来成形。尽管在鉴定涉及该过程的基因或蛋白质方面已取得了迅速的进展,但是人们对该基因和蛋白质在该过程中的机械作用的了解还很少。通过研究亚细胞,细胞和组织水平结构对组织力学性能的贡献,我们发现,在组织水平上,背分离株的组织硬度存在较大的时间和空间变化,并且硬度在很大程度上依赖于旁轴中胚层组织,而已提出支持早期胚胎的脊索组织并不是组织力学的主要贡献者。在细胞水平上,背分离株的机械特性主要取决于细胞,而不取决于它们的ECM。在亚细胞水平上,胚细胞的机械特性由肌动蛋白和肌球蛋白II的收缩力决定,而微管通过Rho-GEF介导的信号传导途径调节肌动球蛋白网络来间接控制组织的硬度。为了测量组织伸展力,我们开发了一种结合成像技术和有限元模型的高通量技术。使用这种技术,我们确定了两种机械适应的情况。在第一种情况下,我们发现背侧轴向组织产生的力较小,以补偿其自身较低的机械阻力。在第二个实验中,我们发现遇到较硬环境的背侧轴向组织能够产生将近两倍大的力。这些适应的情况表明,在CE期间,力的产生在数量上是平衡的,并且负责这种适应的机制能够确保针对物理力产生和组织刚度中的环境和遗传变异,实现强大的形态发生。

著录项

  • 作者

    Zhou, Jian.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Engineering Biomedical.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号