首页> 外文学位 >Lithium-fed arc multichannel and single-channel hollow cathode: Experiment and theory.
【24h】

Lithium-fed arc multichannel and single-channel hollow cathode: Experiment and theory.

机译:锂电电弧多通道和单通道空心阴极:实验和理论。

获取原文
获取原文并翻译 | 示例

摘要

Lithium-fed arc multichannel hollow cathode (MCHC) and single-channel hollow cathode (SCHC) physical processes, including the current conduction mechanism and the conditions that determine the plasma penetration depth, cathode temperature, and cathode voltage drop, are investigated experimentally and theoretically. The ability of the MCHC to conduct high current was previously not understood. Knowledge of the SCHC and MCHC physical processes is required for informed cathode design, especially for that of the lithium Lorentz force accelerator (LiLFA).; Experiments were conducted to measure the plasma penetration depth, cathode temperature, and plasma potential at the cathode tip of four lithium-fed SCHCs (with inner diameters of 2, 4, 6, 8 mm) and an MCHC (19 - 1 mm channels in a 10 mm diameter rod) at mass flow rates of 0.2--4.0 mg/s and currents of 5--210 A. It was found that the plasma penetration depth decreases with mass flow rate, increases with channel diameter, and increases with current. The peak cathode temperature was found to depend on current and channel diameter, but not mass flow rate. From the new findings, it was determined that (1) the arc penetrates to a location of optimum plasma density that depends on current and channel diameter, (2) the arc attaches to the cathode in an annulus of width equal to three times the wall thickness, and (3) the plasma density can be determined from the cathode temperature. The theoretical models predict the cathode voltage drop, cathode temperature, and plasma penetration depth as a function of mass flow rate, cathode material type, cathode geometry, and current. The MCHC model also includes the differences of the multichannel configuration---the thermal interaction of adjacent channels and the division of current and mass flow. The models are validated by the experimental data. They lead to the physical insight that thermal radiation and thermionic cooling are the most significant power loss mechanisms, and that the MCHC operates at a lower voltage than the SCHC because of lower thermal radiation losses due to less exposed surface area, and a reduced temperature due to a larger arc attachment area. Finally, a procedure for the design of an MCHC is presented, which is applied to the cathode of an LiLFA.
机译:通过理论和实验方法研究了锂电电弧多通道空心阴极(MCHC)和单通道空心阴极(SCHC)的物理过程,包括电流传导机理以及确定等离子体穿透深度,阴极温度和阴极电压降的条件。 。以前尚不了解MCHC传导大电流的能力。 SCHC和MCHC物理过程的知识对于明智的阴极设计是必需的,特别是对于洛伦兹锂力促进剂(LiLFA)而言。进行了实验,以测量四个锂基SCHC(内径为2、4、6、8毫米)和MCHC(19-1毫米通道)中的等离子穿透深度,阴极温度和等离子电位。直径为10 mm的杆)在0.2--4.0 mg / s的质量流量和5--210 A的电流下被发现。等离子穿透深度随质量流量而减小,随通道直径而增加,随电流而增加。发现峰值阴极温度取决于电流和通道直径,而不取决于质量流率。根据新发现,可以确定(1)电弧穿透到最佳等离子体密度的位置,该位置取决于电流和通道直径;(2)电弧以等于壁厚三倍的环形空间附着在阴极上(3)等离子体密度可以从阴极温度确定。理论模型预测阴极压降,阴极温度和等离子体穿透深度与质量流量,阴极材料类型,阴极几何形状和电流的关系。 MCHC模型还包括多通道配置的差异-相邻通道的热相互作用以及电流和质量流的划分。通过实验数据验证了模型。它们导致了物理上的洞察力,即热辐射和热电子冷却是最重要的功率损耗机制,并且MCHC在比SCHC更低的电压下工作,这是由于暴露表面积较小以及温度降低导致的热辐射损耗较低到更大的电弧连接区域。最后,介绍了一种设计MCHC的程序,该程序应用于LiLFA的阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号