首页> 外文学位 >Computation of the cross ambiguity function using perfect reconstruction DFT filter banks.
【24h】

Computation of the cross ambiguity function using perfect reconstruction DFT filter banks.

机译:使用完美重构DFT滤波器组计算交叉歧义函数。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents a novel method for computing the Cross Ambiguity Function (CAF) using over-sampled and maximally decimated perfect reconstruction Discrete Fourier Transform Filter Banks (DFT FBs). As with the maximally decimated filter banks, the over sampled filter banks can be used to efficiently filter the signals into sub-bands, calculate the CAF in each sub-band, and then coherently reconstruct the CAFs, provided the DFT Filter Bank's prototype filter meets specific constraints. In this manner, the Time Difference of Arrival (TDOA) accuracy is improved over non-coherent reconstruction, while the Frequency Difference of Arrival (FDOA) accuracy is maintained. One advantage is that, if there is interference from Narrow-Band (NB) signals, the interference can be removed prior to reconstruction of the CAF.; Maximally decimated filter banks are more computationally efficient than the over-sampled filter banks, but they suffer from the fact that there is a limited choice for the prototype filter, with poor side-lobe properties. The over-sampled filter banks are somewhat more computationally complex, but prototype filters with better side-lobe characteristics can be developed. This allows the narrow band interference to be removed more efficiently, since interfering signal's energy is concentrated in a smaller number of sub-bands. The design constraints for the prototype filter for the over-sampled filter bank are the same as that of the cosine modulated filter bank.; The probability of detection performance for the CAF is derived as a function of the probability of false alarm, effective input SNR and number of independent input samples. The distribution is shown to be Rician, so the probability of detection can be computed by calculating the Marcum Q function.; Since computing the CAF is very computationally intensive, and can take a significant amount of time to process on a General Purpose Processor, the CAF algorithms have been implemented in a Field Programmable Gate Array (FPGA) for a significant performance increase.
机译:本文提出了一种使用过采样和最大抽取的完美重构离散傅里叶变换滤波器组(DFT FBs)计算交叉歧义函数(CAF)的新方法。与最大抽取滤波器组一样,过采样的滤波器组可用于有效地将信号滤波到子带中,计算每个子带中的CAF,然后在DFT滤波器组的原型滤波器满足条件的情况下相干地重构CAF。具体约束。以这种方式,相对于非相干重构,改善了到达时间差(TDOA)的准确性,同时维持了到达频率差(FDOA)的准确性。一个优点是,如果存在来自窄带(NB)信号的干扰,则可以在重构CAF之前消除干扰。最大抽取的滤波器组比过采样的滤波器组在计算效率上更高,但是它们遭受这样的事实,即原型滤波器的选择有限,旁瓣特性差。过采样的滤波器组在计算上有些复杂,但是可以开发具有更好的旁瓣特性的原型滤波器。由于干扰信号的能量集中在较少数量的子带中,因此可以更有效地消除窄带干扰。过采样滤波器组的原型滤波器的设计约束与余弦调制滤波器组的约束相同。 CAF的检测性能概率是根据虚警概率,有效输入SNR和独立输入样本的数量得出的。分布显示为Rician,因此可以通过计算Marcum Q函数来计算检测概率。由于计算CAF的计算量很大,并且可能需要花费大量时间在通用处理器上进行处理,因此已经在现场可编程门阵列(FPGA)中实现了CAF算法,以显着提高性能。

著录项

  • 作者

    Bentz, Kenneth P.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号