首页> 外文学位 >Coloring and labeling problems on graphs.
【24h】

Coloring and labeling problems on graphs.

机译:图形上的着色和标签问题。

获取原文
获取原文并翻译 | 示例

摘要

This thesis studies both several extremal problems about coloring of graphs and a labeling problem on graphs.;We consider colorings of graphs that are either embeddable in the plane or have low maximum degree. We consider three problems: coloring the vertices of a graph so that no adjacent vertices receive the same color, coloring the edges of a graph so that no adjacent edges receive the same color, and coloring the edges of a graph so that neither adjacent edges nor edges at distance one receive the same color. We use the model where colors on vertices must be chosen from assigned lists and consider the minimum size of lists needed to guarantee the existence of a proper coloring.;More precisely, a list assignment function L assigns to each vertex a list of colors. A proper L-coloring is a proper coloring such that each vertex receives a color from its list. A graph is k-list-colorable if it has an L-coloring for every list assignment L that assigns each vertex a list of size k. The list chromatic number chi l (G) of a graph G is the minimum k such that G is k-list-colorable. We also call the list chromatic number the choice number of the graph. If a graph is k-list-colorable, we call it k-cooosable.;The elements of a graph are its vertices and edges. A proper total coloring of a graph is a coloring of the elements so that no adjacent elements and no incident elements receive the same color. The total list-chromatic number is the minimum list size that guarantees the existence of a proper total coloring. We give a linear-time algorithm to find a proper total coloring from lists of size 2Delta( G) - 1. When Delta(G) = 4, our algorithm improves the best known upper bound. When Delta(G) ∈ {5, 6} our algorithm matches the best known upper bound and runs faster than the best previously known algorithm.;The square of a graph G is the graph obtained from G by adding the edge xy whenever the distance between x and y in G is 2. We study the list chromatic numbers of squares of subcubic graphs; a graph is subcubic if it has maximum degree at most 3. We show that the square of every subcubic graph other than the Petersen graph is 8-list-colorable. For planar graphs with large girth, we use the discharging method to improve this upper bound. We show that the square of a planar subcubic graph with girth at least 7 is 7-list-colorable. We show that the square of a planar subcubic graph with girth at least 9 is 6-list-colorable. In each case we give linear-time algorithms to construct the colorings from the assigned lists.;The strong edge-chromatic number of a graph is the minimum number of colors needed to color the edges so that no two edges on a path of length at most 3 receive the same color. Erdős and Nesetril conjectured that when Delta(G) = 4, the strong edge-chromatic number is at most 20; they gave a construction requiring 20 colors. The previous upper bound was 23, due to Horak. We improve this upper bound to 22.;We study the list edge-chromatic numbers of planar graphs. A graph is k-edge-choosable, if its line graph L(G ) is k-choosable. We call the choice number of the line graph L(G) the edge choice number of G. A kite is the union of two 3-cycles that share an edge. We show that if a planar graph has no kite (as a subgraph) and has maximum degree at least 9, then its list edge-chromatic number equals its maximum degree. We also show that if a planar graph has no kite (as a subgraph) and has maximum degree at least 6, then the list edge-chromatic number is at most one more than the maximum degree; the optimal bound is at most one less than this.;A graph is (r, s)-choosable if whenever each vertex is given a list of r colors, we can choose a sublist of s colors for each vertex so that adjacent vertices receive disjoint sublists. A graph is G (r,s)- edge-choosable if its line graph L( G) is (r, s)-choosable. Mohar [37] conjectured that all 3-regular graphs are (7,2)-edge-choosable. If true, this result would be tight. We show that all 3-edge-colorable graphs are (7, 2)-edge-choosable; in addition, we show that many snarks are (7, 2)-edge-choosable. In each case, we give a linear-time algorithm to construct the coloring from given lists.;The sum choice number of a graph is the minimum total weight of a positive integer valuation of its vertices such that the graph is L-colorable for any list assignment L that the size of the list for each vertex is the integer value given to that vertex. We generalize this idea to the k-sum choice number, which is the minimum sum of list sizes such that we can choose k colors for each vertex (from its list) so that the sets of colors assigned to adjacent vertices are disjoint. We determine the 2-sum choice number of paths and cycles; additionally we determine all list-size assignment functions that achieve the 2-sum choice number for paths and cycles.;A labeling of a graph is a bijective function from the set {1,2,...,|E|} onto the edges of the graph. The sum of the labels on edges incident to a vertex v is the vertex-sum at v. A labeling is antimagic if the vertex-sums are distinct. Ringel [19] conjectured that every connected graph other than K2 has an antimagic labeling. We prove that every regular bipartite graph other than a matching has an antimagic labeling.
机译:本文研究了关于图着色的极端问题和在图上的标注问题。我们考虑图的着色要么嵌入在平面中,要么具有较低的最大程度。我们考虑三个问题:为图的顶点着色,以使相邻的顶点都不接收相同的颜色;为图的边缘着色,以使相邻的顶点都不接收相同的颜色;为图的边缘着色,以使相邻的边或顶点都不着色。距离一的边缘接收相同的颜色。我们使用该模型,其中必须从分配的列表中选择顶点上的颜色,并考虑保证适当的着色存在所需的列表的最小大小。;更准确地说,列表分配函数L为每个顶点分配一个颜色列表。适当的L着色是适当的着色,以使每个顶点都从​​其列表中接收颜色。如果图形具有每个列表分配L的L颜色,该列表为每个顶点分配大小为k的列表,则该图是k列表可着色的。图G的列表色数chi 1(G)是最小的k,使得G是k列表可着色的。我们也将列表色数称为图形的选择数。如果一个图是k-list-colorable的,我们称它为k-cooosable。;图的元素是其顶点和边。图的适当的总着色是元素的着色,以使相邻元素和入射元素都不会获得相同的颜色。总列表色数是最小列表大小,可保证存在适当的总颜色。我们给出了一个线性时间算法,以从大小为2Delta(G)-1的列表中找到合适的总着色。当Delta(G)= 4时,我们的算法将改善已知的上限。当Delta(G)∈{5,6}时,我们的算法与已知的上限匹配,并且比以前的最佳算法运行得更快。;图G的平方是从G通过在任意距离上加上边xy而获得的图G中x和y之间的值为2。我们研究亚三次图的平方的列表色数;如果一个图的最大阶数最多为3,则它是次三次的。我们证明,除了Petersen图之外,每个次三次图的平方都是8列表可着色的。对于大周长的平面图,我们使用放电方法来改善此上限。我们显示,周长至少为7的平面次三次图的平方是7列表可着色的。我们显示,周长至少为9的平面次三次图的平方是6列表可着色的。在每种情况下,我们都提供线性时间算法来从分配的列表中构造颜色;图的强边-色数是对边缘进行着色所需的最小颜色数,因此在长度路径上没有两个边为大多数3接收相同的颜色。 Erdő s和Nesetril推测,当Delta(G)= 4时,强边色数最多为20;他们给出了一种需要20种颜色的结构。由于Horak,先前的上限是23。我们将此上限提高到22。;我们研究平面图的列表边色数。如果图的线图L(G)是k-可选择的,则它是k-edge-hooseable的。我们将线图的选择号L(G)称为G的边缘选择号。风筝是两个共享边的3个循环的并集。我们表明,如果平面图没有风筝(作为子图)并且最大度数至少为9,则其列表边缘色数等于其最大度数。我们还表明,如果平面图没有风筝(作为子图)并且最大度数至少为6,则列表边缘色数最多比最大度数大1;最佳边界至少比此小1。如果每一个顶点被赋予r颜色列表,我们可以为每个顶点选择s颜色的子列表,以便相邻顶点接收,则可以选择(r,s)图不相交的子列表。如果图形的线图L(G)是(r,s)可选择的,则图形是G(r,s)-可以边缘选择的。 Mohar [37]推测所有3个正则图都是(7,2)边可选的。如果为true,则此结果将很严格。我们显示所有3边可着色的图都是(7,2)边可选择的;此外,我们显示许多蛇都可以选择(7,2)个边。在每种情况下,我们都给出一种线性时间算法来从给定列表中构造颜色;图的总和选择数是其顶点的正整数估值的最小总权重,因此该图对于任何图都是L可着色的列表分配L,即每个顶点的列表大小是赋予该顶点的整数值。我们将此思想概括为k-sum选择数,它是列表大小的最小和,因此我们可以为每个顶点(从其列表中)选择k种颜色,从而使分配给相邻顶点的颜色集不相交。我们确定路径和循环的2和选择数。此外,我们确定所有列表大小的赋值函数,这些函数实现路径和循环的2和选择数。;图的标记是来自集合{1,2,...的双射函数。,| E |}移到图形的边缘。入射到顶点v的边缘上的标签之和为v处的顶点和。如果顶点和不同,则标记是反魔术的。 Ringel [19]推测,除K2之外,每个相连的图都有反魔术标记。我们证明除匹配之外的每个规则二部图都具有反魔术标记。

著录项

  • 作者

    Cranston, Daniel W.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 126 p.
  • 总页数 126
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号