首页> 外文学位 >Tailored interphase structure for improved strength and energy absorption of composites.
【24h】

Tailored interphase structure for improved strength and energy absorption of composites.

机译:量身定制的相间结构可提高复合材料的强度和能量吸收。

获取原文
获取原文并翻译 | 示例

摘要

Fiber reinforced polymeric composites are lightweight, high-strength and high impact-resistant materials used widely for various applications. It has been shown that the mechanical performance of composites are dependent on the interphase, a three-dimensional region of nanometer size in the vicinity of the fiber-matrix boundary that possesses properties different from those of either the fiber reinforcement or the matrix resin and governs the load transfer from matrix to fiber. This research conducts a systematic study on glass fiber-epoxy interphase structure by tailoring adhesion between constituents and the creation of textures to control strength and energy absorption through mechanical interlocking between glass fiber and epoxy matrix. Our objective is to establish the foundation for microstructural design and optimization of the composite's structural and impact performance.; Two ways of roughening the glass fiber surface have been studied to create the mechanical interlocking between fiber and resin; the first technique involves forming in-situ islands on the glass fiber surface by using silane blends of Glycidoxypropyltrimethoxy silane (GPS) and Tetraethoxy silane (TEOS); the second technique applies a silane coupling agents based sizing with the incorporation of silica nanoparticles (Ludox TMA, 22 nm) onto the fiber surface. The microdroplet test was selected to characterize the influence of adhesion and mechanical interlocking effects on interphase properties of different sizing sized glass fiber reinforced epoxy systems. A suitable data reduction scheme enables the strength and specified energy absorbed due to debonding, dynamic sliding, and quasi-static sliding to be quantified.; In order to validate the effect of tailored interphase structure, which is induced by creating mechanical interlocking between fiber and resin, on macroscopic composite properties, composite panels were made from these four different sizing sized glass fibers and tested using the punch shear test. The composite panel made from the hybrid sizing sized glass fiber exhibited improved strength and energy absorption consistent with the trends in micromechanical measurements. Through all failure stages under macromechanical testing, hybrid sizing sized glass fiber/epoxyamine composite panel shows an increase in the strength and total energy absorption by 13% and 26%, respectively, compared to the compatible sizing sized baseline.; Both micromechanical and macromechanical tests demonstrate the significant influence of tailoring the interphase structure on improving the impact performance of the composites. The hybrid sizing with the incorporation of nanoparticles, in particular, can greatly improve the impact resistance (i.e. energy absorption) of composites without sacrificing its structural performance (i.e. strength).
机译:纤维增强的聚合物复合材料是轻质,高强度和高耐冲击的材料,广泛用于各种应用。已经表明,复合材料的机械性能取决于相间,即纤维-基体边界附近的纳米尺寸的三维区域,该区域具有与纤维增强材料或基体树脂不同的性能,并决定了负载从基体转移到光纤。该研究对玻璃纤维-环氧树脂界面结构进行了系统的研究,方法是调整各成分之间的粘合力,并通过玻璃纤维与环氧基质之间的机械互锁来控制结构的强度和能量吸收,从而创建纹理。我们的目标是为微结构设计以及复合材料的结构和冲击性能的优化奠定基础。已经研究了两种使玻璃纤维表面变粗糙的方法,以在玻璃纤维和树脂之间建立机械互锁。第一种技术涉及通过使用缩水甘油丙基三甲氧基硅烷(GPS)和四乙氧基硅烷(TEOS)的硅烷共混物在玻璃纤维表面上就地形成岛状结构;第二种技术是通过在玻璃纤维表面上掺入二氧化硅纳米颗粒(Ludox TMA,22 nm)来施涂硅烷偶联剂。选择微滴试验来表征粘附力和机械互锁效应对不同上浆尺寸的玻璃纤维增​​强环氧体系的相间性能的影响。适当的数据缩减方案可以对由于脱粘,动态滑动和准静态滑动而吸收的强度和指定能量进行量化。为了验证通过在纤维和树脂之间建立机械互锁而引起的定制相间结构对宏观复合材料性能的影响,由这四种不同上浆尺寸的玻璃纤维制成复合板,并使用冲剪试验对其进行了测试。由混合上浆的玻璃纤维制成的复合板显示出改进的强度和能量吸收,与微机械测量的趋势一致。在相适应的施胶尺寸基准线下,在宏观力学测试的所有失败阶段,混合施胶尺寸的玻璃纤维/环氧胺复合板的强度和总能量吸收分别增加了13%和26%。微观力学和宏观力学测试均表明,调整相间结构对改善复合材料的冲击性能具有重大影响。特别地,通过掺入纳米颗粒的混合施胶可以大大提高复合材料的抗冲击性(即能量吸收),而不会牺牲其结构性能(即强度)。

著录项

  • 作者

    Gao, Xiao.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 321 p.
  • 总页数 321
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号