首页> 外文学位 >Semiconductor nanowire FET sensors: Label-free, ultasensitive, multiplexed biomolecule detection and biophysical studies.
【24h】

Semiconductor nanowire FET sensors: Label-free, ultasensitive, multiplexed biomolecule detection and biophysical studies.

机译:半导体纳米线FET传感器:无标签,超敏感,多重生物分子检测和生物物理研究。

获取原文
获取原文并翻译 | 示例

摘要

One-dimensional nanomaterials such as nanowires have attracted substantial interests in the study of interplays between these nanostructures and biology. Semiconducting silicon nanowires (SiNWs) can be fabricated as high-performance field-effect transistors (FETs), and their unique features such as similar diameters to biomolecules, high surface-to-volume ratios, chemically tailorable physical properties and overall structure robustness enable their applications in sensitive biomolecule detection and bio-diagnostic assays. Moreover, their properties of direct electrical real-out during biosensing and compatibility with large-scale integrated electronics make nanowire FET sensors an ideal candidate as a general/powerful platform for label-free, real-time, multiplexed biomolecule detection as well as biophysical studies.; We first describe the successful synthesis and fabrication of high-performance n-type (phosphorus-doped) and p-type (boron-doped) SiNW FETs. One important application of these SiNW FET biosensors is the detection of proteins including cancer markers and bacterial toxins. Modified with surface receptors such as monoclonal antibodies or gangliosides, these nanowire FETs can reliably detect proteins at femtomolar range in buffer, and low picomolar range in clinical samples such as serum or urine. In addition, multiplexed detection of >10 proteins have been carried out in a single chip simultaneously, while the binding kinetics can also been measured in parallel. This study demonstrates that potential clinical applications of nanowire sensors for disease diagnosis and treatment, as well as biophysical studies.; In addition, we report the direct, real-time electrical detection of viruses. Simultaneous fluorescent microscopy and electrical measurement show that the conductance changes in SiNW FET sensor directly relate to the binding/unbinding of single virus particles on nanowire surface. This study defines ultimate sensitivity limit of detecting single biological entity by nanowire sensors.; Moreover, the sensitivity of nanowire sensors can be further optimized by various device optimization approaches, such as reducing the nanowire diameter, shrinking the transistor channel length, and operating the SiNW FET in the sub-threshold regime.; Finally, frequency domain analysis has been carried out to study the microscopic fluctuations on nanowire surface during biomolecule binding. These novel approaches can be used to push the sensitivity limit of these nanowire sensors, while at the same time addressing fundamental biophysical questions and suggesting new applications.
机译:一维纳米材料(例如纳米线)在研究这些纳米结构与生物学之间的相互作用方面引起了广泛的兴趣。半导体硅纳米线(SiNW)可以制造为高性能场效应晶体管(FET),它们的独特功能,例如与生物分子相似的直径,高的表面体积比,化学可定制的物理特性以及整体结构的坚固性,使它们能够在灵敏的生物分子检测和生物诊断测定中的应用。此外,它们在生物传感过程中具有直接电实时输出的特性以及与大规模集成电子设备的兼容性,使得纳米线FET传感器成为无标记,实时,多重生物分子检测以及生物物理研究的通用/强大平台的理想选择。 。;我们首先描述高性能n型(磷掺杂)和p型(硼掺杂)SiNW FET的成功合成与制造。这些SiNW FET生物传感器的一个重要应用是蛋白质的检测,包括癌症标志物和细菌毒素。这些纳米线FET经过表面受体(例如单克隆抗体或神经节苷脂)修饰,可以可靠地检测缓冲液中飞摩尔范围内的蛋白质,而在诸如血清或尿液的临床样本中低皮摩尔范围内的蛋白质。另外,已经在单个芯片上同时进行了> 10种蛋白质的多重检测,同时还可以并行测量结合动力学。这项研究表明纳米线传感器在疾病诊断和治疗以及生物物理研究中的潜在临床应用。此外,我们报告了对病毒的直接实时电气检测。同时荧光显微镜和电学测量表明,SiNW FET传感器中的电导率变化直接与纳米线表面上单个病毒颗粒的结合/解结合有关。这项研究定义了通过纳米线传感器检测单个生物实体的最终灵敏度极限。此外,可以通过各种器件优化方法来进一步优化纳米线传感器的灵敏度,例如,减小纳米线直径,缩小晶体管沟道长度以及在亚阈值范围内操作SiNW FET。最后,进行了频域分析,以研究生物分子结合过程中纳米线表面的微观波动。这些新颖的方法可用于推动这些纳米线传感器的灵敏度极限,同时解决基本的生物物理问题并提出新的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号