首页> 外文学位 >Flow-Induced Segregation in Confined Multicomponent Suspensions.
【24h】

Flow-Induced Segregation in Confined Multicomponent Suspensions.

机译:密闭多组分悬浮液中的流致偏析。

获取原文
获取原文并翻译 | 示例

摘要

Flow-induced segregation is present in confined multicomponent suspensions such as blood, which is our focus here. During blood flow white blood cells and platelets segregate near the vessel walls, a phenomenon known as margination, while red blood cells tend to be depleted in the near-wall region, leading to a nonuniform distribution in flow and the formation of a depletion layer. We developed a mechanistic theory to describe these segregation phenomena in confined multicomponent suspensions. It incorporates the two key phenomena arising in these systems at low Reynolds number: hydrodynamic pair collisions and hydrodynamic migration. Two flow profiles are considered: plane Couette and plane Poiseuille flows. The model captures important phenomena such as depletion layer formation and margination. The depletion layer thickness of the primary component is predicted to follow a master curve relating it in a specific way to confinement ratio and volume fraction. In a binary suspension, several regimes of segregation arise, depending on the value of a "margination parameter" M. Most importantly, in both Couette and Poiseuille flows there is a critical value of M below which a sharp "drainage transition" occurs: one component is completely depleted from the bulk flow to the vicinity of the walls. Direct simulations corroborate this prediction.;We also investigate the effect of drag-reducing polymers (DRPs) on the drift mechanism of a single particle due to the presence of a wall. DRPs add viscoelastic properties to the flow and show significant beneficial therapeutic effects on blood circulation by increasing blood flow and tissue oxygenation. They also show promise in particle separation in medical microfluidic devices. A model is developed to describe flowing DRPs and included in direct hydrodynamic simulations of deformable capsules and polymers. Under shear flow, the presence of the wall induces a drift velocity that causes the particle to exhibit a different velocity than that of the imposed flow. A connection between this difference in velocity and the effect of DRPs is also investigated.;The presented theory and direct simulations provide substantial insights into the mechanisms behind margination and segregation phenomena in confined multicomponent suspensions.
机译:流致偏析存在于封闭的多组分悬浮液(例如血液)中,这是我们在此关注的重点。在血流过程中,白细胞和血小板在血管壁附近分离,这种现象被称为边缘化,而红细胞则倾向于在近壁区域耗竭,从而导致血流分布不均匀并形成耗竭层。我们开发了一种机械理论来描述受限多组分悬浮液中的这些偏析现象。它包含了在低雷诺数下这些系统中出现的两个关键现象:流体动力对碰撞和流体动力迁移。考虑了两种流动曲线:平面库埃特流和平面泊瓦伊流。该模型捕获重要的现象,例如耗尽层的形成和边缘化。预测主要成分的耗尽层厚度遵循主曲线,该主曲线以特定方式将其与约束比和体积分数相关。在二元悬浮液中,根据“浸水参数” M的值,出现了几种隔离状态。最重要的是,在库埃特流和泊瓦伊流中,都有一个临界值M,在该临界值以下会发生急剧的“排水转变”:组件从大流量完全耗尽到壁附近。直接模拟证实了这一预测。我们还研究了减阻聚合物(DRP)对由于壁的存在而对单个颗粒的漂移机理的影响。 DRPs增加了血流的粘弹性,并通过增加血流和组织氧合作用对血液循环显示出显着的有益治疗作用。它们还在医疗微流体设备中的颗粒分离中显示出希望。开发了一个模型来描述流动的DRP,并将其包含在可变形胶囊和聚合物的直接流体动力学模拟中。在剪切流作用下,壁的存在引起了漂移速度,该漂移速度导致颗粒表现出与施加流不同的速度。还研究了这种速度差异与DRP效果之间的联系。提出的理论和直接模拟为封闭多组分悬浮液中边缘化和偏析现象的机理提供了实质性的见识。

著录项

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Chemical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:32

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号