首页> 外文学位 >3D Printed Silk Scaffolds with Riboflavin-Induced Light Curing.
【24h】

3D Printed Silk Scaffolds with Riboflavin-Induced Light Curing.

机译:具有核黄素诱导的光固化的3D打印丝绸支架。

获取原文
获取原文并翻译 | 示例

摘要

3D printing opens up new possibilities and techniques for individualized medicine but it also comes with inherent weaknesses. One of these drawbacks is the mechanical weakness of the structures as a result of their laminar construction. This work describes a new printing system for silk hydrogels that are stiffer than any that have been printed before, paving the way for taller structures that have smaller features. As part of this printing system, a larger printer was designed with self-contained sterility systems and a greatly increased print volume compared to current models. Additionally, light-curable inks were formulated, tested, and printed using existing 3D printers to quantify their usefulness as part of a catalogue of silk-based hydrogel inks. The long-term goal for this catalogue is to document formulae and procedures that produce hydrogels of varying mechanical and biological properties for tissue engineering. The experimental procedures presented here indicate that modest amounts of physiologically inert light are sufficient to significantly increase the stiffness of riboflavin-infused silk hydrogels. In one experiment, approximately 750J of blue light increased the young's modulus of gels by 50% from 5kPa to 7.5kPa. In a printed tower test, 5J of violet light increased the modulus of plastic deformation by 13% from 15kPa to 17kPa. Single filaments made from printed hydrogels treated with focused laser light at levels below 10mJ showed no significant increase in tensile strength, suggesting that the minimum threshold for noticeable effects in 2mM riboflavin gels is on the order of magnitude of 1-5J of light. Applying more than 1,000J of light was not found to increase the stiffness of these gels. Lastly, the current uses and the future of this technology are discussed.
机译:3D打印为个性化医学开辟了新的可能性和技术,但它也具有固有的弱点。这些缺点之一是由于其层状构造而导致的结构的机械弱点。这项工作描述了一种新型的丝绸水凝胶印刷系统,该系统比以前印刷过的任何一种都要坚硬,这为具有较小特征的较高结构铺平了道路。作为该打印系统的一部分,与现有型号相比,更大的打印机设计有独立的无菌系统,并且打印量大大增加。另外,使用现有的3D打印机配制,测试和打印可光固化的油墨,以量化其作为基于丝绸的水凝胶油墨目录的一部分的用途。该目录的长期目标是记录配方和程序,以生产出具有不同机械和生物学特性的水凝胶以用于组织工程。此处介绍的实验程序表明,适度的生理惰性光足以显着增加注入核黄素的丝水凝胶的硬度。在一个实验中,大约750J的蓝光将凝胶的杨氏模量从5kPa增加到7.5kPa,增加了50%。在印刷塔测试中,5J的紫色光将塑性变形模量从15kPa增加到17kPa,增加了13%。由在低于10mJ的水平下用聚焦激光处理的印刷水凝胶制成的单丝显示抗张强度没有显着增加,这表明2mM核黄素凝胶中显着作用的最小阈值约为1-5J的光。没有发现施加超过1,000J的光会增加这些凝胶的硬度。最后,讨论了该技术的当前用途和未来。

著录项

  • 作者

    Gifford, Robert.;

  • 作者单位

    Tufts University.;

  • 授予单位 Tufts University.;
  • 学科 Biomedical engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号