首页> 外文学位 >Computational approaches for diffusive light transport: Finite-elements, grid adaption, and error estimation.
【24h】

Computational approaches for diffusive light transport: Finite-elements, grid adaption, and error estimation.

机译:扩散光传输的计算方法:有限元,网格自适应和误差估计。

获取原文
获取原文并翻译 | 示例

摘要

Subsurface light transport in highly scattering media is a problem of great interest to both computer graphics and biomedical optics researchers. Specifically, computer graphics researchers strive to develop more accurate simulations of light physics to in turn generate more realistic synthetic images. Likewise, biomedical optics researchers are concerned with accurately simulating light propagation to aid in design of equipment for diagnostic medical use.; The mathematical formulation for diffusive light transport is presented along with a derivation for both a finite difference and finite element numerical solution for two and three dimensions. Efficient implementations are proposed which use Cholesky factorization to efficiently update the light scatter calculations if the source changes. Furthermore, the use data structures are proposed to accelerate (by an order of magnitude) parts of the source calculation and finite element matrix construction proposed by current biomedical optics literature.; Furthermore, a novel technique for grid refinement for the finite element formulation using hanging nodes is presented. This technique allows for simple mesh refinement while maintaining the flux continuity on the finite element formulation. In conjunction with this technique, a per-element error estimator derived from a Green's function is presented along with a discussion on why traditional Galerkin style a posteriori estimation techniques fail. These techniques can then be combined to drive an adaptive finite element grid refinement method.; Finally, to demonstrate the practicality of these techniques are demonstrated on simulations of numerical phantoms whose geometry and scattering properties were selected using segmented MRI data of human tissues. Furthermore, the results are visually comparable to images derived from a real world device which visualizes subsurface vasculature in human tissue by transilluminating tissue with near infrared light.
机译:计算机图形学和生物医学光学研究人员都非常关注地下光在高散射介质中的传输。具体而言,计算机图形学研究人员致力于开发更精确的光物理模拟,从而生成更逼真的合成图像。同样,生物医学光学研究人员关注精确模拟光的传播,以帮助设计用于诊断医学的设备。给出了扩散光传输的数学公式,以及二维和三维有限差分和有限元数值解的推导。提出了一种有效的实现方式,如果光源发生变化,则使用Cholesky因式分解有效地更新光散射计算。此外,提出了使用数据结构以加速(按数量级)部分源计算和当前生物医学光学文献提出的有限元矩阵构造。此外,提出了一种新技术,用于使用悬挂节点对有限元公式进行网格细化。该技术可简化网格划分,同时保持有限元公式的通量连续性。结合该技术,提出了从格林函数导出的每个元素的误差估计器,并讨论了传统的Galerkin风格后验估计技术为何失败。然后可以将这些技术进行组合以驱动自适应的有限元网格细化方法。最后,为证明这些技术的实用性,在数字体模的仿真中得到了证明,这些体模的几何形状和散射特性是使用人体组织的分段MRI数据选择的。此外,该结果在视觉上可与源自真实世界的设备的图像相比较,该设备通过用近红外光对组织进行透视来可视化人体组织中的地下脉管系统。

著录项

  • 作者

    Sharp, Richard P., Jr.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

  • 入库时间 2022-08-17 11:40:25

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号