首页> 外文学位 >Designing order picking systems for distribution centers.
【24h】

Designing order picking systems for distribution centers.

机译:设计配送中心的订单拣选系统。

获取原文
获取原文并翻译 | 示例

摘要

This research addresses decisions involved in the design of an order picking system in a distribution center. A distribution center (DC) in a logistics system is responsible for obtaining materials from different suppliers and assembling (or sorting) them to fulfill a number of different customer orders. Order picking, which is a key activity in a DC, refers to the operation through which items are retrieved from storage locations to fulfill customer orders.; Several decisions are involved when designing an order picking system (OPS). Some of these decisions include the identification of the picking-area layout, configuration of the storage system, and determination of the storage policy, picking method, picking strategy, material handling system, pick-assist technology, etc. For a given set of these parameters, the best design depends on the objective function (e.g., maximizing throughout, minimizing cost, etc.) being optimized. The overall goal of this research is to develop a set of analytical models for OPS design. The idea is to help an OPS designer to identify the best performing alternatives out of the large number of possible alternatives. Such models will complement experienced-based or simulation-based approaches, with the goal of improving the efficiency and efficacy of the design process.; In this dissertation we focus on the following two key OPS design issues: configuration of the storage system and selection between batch and zone order picking strategies. Several factors that affect these decisions are identified in this dissertation; a common factor amongst these being picker blocking. We first develop models to estimate picker blocking (Contribution 1) and use the picker blocking estimates in addressing the two OPS design issues, presented as Contributions 2 and 3.; In Contribution 1 we develop analytical models using discrete-time Markov chains to estimate pick-face blocking in wide-aisle OPSs. Pick-face blocking refers to the blocking experienced by a picker at a pick-face when another picker is already picking at that pick-face. We observe that for the case when pickers may pick only one item at a pick-face, similar to in-the-aisle blocking, pick-face blocking first increases with an increase in pick-density and then decreases. Moreover, pick-face blocking increases with an increase in the number of pickers and pick to walk time ratio, while it decreases with an increase in the number of pick-faces. For the case when pickers may pick multiple items at a pick-face, pick-face blocking increases monotonically with an increase in the pick-density. These blocking estimates are used in addressing the two OPS design issues, which are presented as Contributions 2 and 3.; In Contribution 2 we address the issue of configuring the storage system for order picking. A storage system, typically comprised of racks, is used to store pallet-loads of various stock keeping units (SKU)---a SKU is a unique identifier of products or items that are stored in a DC. The design question we address is related to identifying the optimal height (i.e., number of storage levels), and thus length, of a one-pallet-deep storage system. We develop a cost-based optimization model in which the number of storage levels is the decision variable and satisfying system throughput is the constraint. The objective of the model is to minimize the system cost, which is comprised of the cost of labor and space. To estimate the cost of labor we first develop a travel-time model for a person-aboard storage/retrieval (S/R) machine performing Tchebyshev travel as it travels in the aisle. Then, using this travel-time model we estimate the throughput of each picker, which helps us estimate the number of pickers required to satisfy the system throughput for a given number of storage levels. An estimation of the cost of space is also modeled to complete the total cost model. Results from an experimental study suggest that a low (in height) and long (in length)
机译:这项研究解决了配送中心订单拣选系统设计中涉及的决策。物流系统中的配送中心(DC)负责从不同的供应商那里获取物料,并将其组装(或分类)以履行许多不同的客户订单。订单拣选是配送中心的一项关键活动,是指从存储位置检索物料以履行客户订单的操作。设计订单拣选系统(OPS)时涉及多个决策。这些决策中的一些决策包括拣配区域布局的标识,存储系统的配置以及存储策略,拣选方法,拣选策略,物料搬运系统,拣选辅助技术等的确定。对于给定的一组这些参数,最佳设计取决于要优化的目标功能(例如,最大化最大化,最小化成本等)。这项研究的总体目标是为OPS设计开发一套分析模型。这个想法是要帮助OPS设计人员从大量可能的替代方案中找出性能最佳的替代方案。这种模型将补充基于经验或基于仿真的方法,以提高设计过程的效率和功效为目标。本文重点研究以下两个关键的OPS设计问题:存储系统的配置以及批次和区域订单拣选策略之间的选择。本文确定了影响这些决策的几个因素。其中一个常见的因素是选择器阻塞。我们首先开发模型来估计选择器阻塞(贡献1),并使用选择器阻塞估计来解决两个OPS设计问题,表示为贡献2和3。在贡献1中,我们使用离散时间马尔可夫链开发了分析模型,以估计宽通道OPS中的拾取面阻塞。拾取面阻挡是指当另一个拾取器已经在该拾取面上拾取时,拾取器在拾取面上所经历的阻挡。我们观察到,对于拣选人员只能在拣选面上拣选一个项目的情况,类似于过道阻塞,拣选面阻塞首先随着拣选密度的增加而增加,然后减少。此外,拾取面阻挡随着拾取器和拾取行走时间比率的增加而增加,而随着拾取面数目的增加而减小。对于拾取器可能在拾取面上拾取多个项目的情况,拾取面阻塞随拾取密度的增加而单调增加。这些阻塞估计用于解决两个OPS设计问题,分别表示为贡献2和贡献3。在贡献2中,我们解决了配置存储系统以进行订单拣配的问题。通常由机架组成的存储系统用于存储各种库存单位(SKU)的托盘货物-SKU是存储在DC中的产品或物品的唯一标识符。我们要解决的设计问题与确定一托盘深的存储系统的最佳高度(即存储级别数)以及长度有关。我们开发了一个基于成本的优化模型,其中存储级别的数量是决策变量,而满足系统吞吐量是约束。该模型的目的是最大程度地减少系统成本,其中包括人工和空间成本。为了估算人工成本,我们首先为随车人员在过道中进行Tchebyshev出行的存储/取回(S / R)机器开发了出行时间模型。然后,使用此旅行时间模型,我们估计每个拣选器的吞吐量,这有助于我们估计在给定数量的存储级别下满足系统吞吐量所需的拣选器数量。还对空间成本估算进行建模,以完成总成本模型。实验研究的结果表明,矮(高)和长(长)

著录项

  • 作者

    Parikh, Pratik J.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Engineering System Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 系统科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号