首页> 外文学位 >Design and evaluation of carbon nanofiber and silicon materials for neural implant applications.
【24h】

Design and evaluation of carbon nanofiber and silicon materials for neural implant applications.

机译:用于神经植入物的碳纳米纤维和硅材料的设计和评估。

获取原文
获取原文并翻译 | 示例

摘要

Reduction of glial scar tissue around central nervous system implants is necessary for improved efficacy in chronic applications. Design of materials that possess tunable properties inspired by native biological tissue and elucidation of pertinent cellular interactions with these materials was the motivation for this study. Since nanoscale carbon fibers possess the fundamental dimensional similarities to biological tissue and have attractive material properties needed for neural biomaterial implants, this present study explored cytocompatibility of these materials as well as modifications to traditionally used silicon. On silicon materials, results indicated that nanoscale surface features reduced astrocyte functions, and could be used to guide neurite extension from PC12 cells. Similarly, it was determined that astrocyte functions (key cells in glial scar tissue formation) were reduced on smaller diameter carbon fibers (125 nm or less) while PC12 neurite extension was enhanced on smaller diameter carbon fibers (100 nm or less). Further studies implicated laminin adsorption as a key mechanism in enhancing astrocyte adhesion to larger diameter fibers and at the same time encouraging neurite extension on smaller diameter fibers. Polycarbonate urethane (PCU) was then used as a matrix material for the smaller diameter carbon fibers (100 and 60 nm). These composites proved very versatile since electrical and mechanical properties as well as cell functions and directionality could be influenced by changing bulk and surface composition and features of these matrices. When these composites were modified to be smooth at the micronscale and only rough at the nanoscale, P19 cells actually submerged philopodia, extensions, or whole cells bodies beneath the PCU in order to interact with the carbon nanofibers. These carbon nanofiber composites that have been formulated are a promising material to coat neural probes and thereby enhance functionality at the tissue interface. This improved chronic tissue interaction has the potential to reduce invasive intervention surgeries and provide sustained benefits from neural implants in patients with pathologies such as Parkinson's disease.
机译:减少中枢神经系统植入物周围的神经胶质瘢痕组织对于改善慢性应用的疗效是必要的。设计具有可调谐特性的材料的设计是受到本机生物组织的启发,并且阐明了与这些材料相关的细胞相互作用是本研究的动机。由于纳米级碳纤维具有与生物组织基本的尺寸相似性,并且具有神经生物材料植入物所需的有吸引力的材料特性,因此本研究探索了这些材料的细胞相容性以及对传统使用的硅的修饰。在硅材料上,结果表明纳米级表面特征降低了星形胶质细胞的功能,可用于指导PC12细胞的神经突扩展。类似地,确定在较小直径的碳纤维(125 nm或更小)上星形胶质细胞功能(胶质瘢痕组织形成中的关键细胞)减少,而在较小直径的碳纤维(100 nm或更小)上PC12神经突延伸增强。进一步的研究表明层粘连蛋白吸附是增强星形胶质细胞对直径较大的纤维的粘附并同时促进直径较小的纤维上的神经突扩展的关键机制。然后将聚碳酸酯尿烷(PCU)用作较小直径碳纤维(100和60 nm)的基质材料。这些复合材料非常通用,因为电气和机械性能以及电池功能和方向性可能会受到这些基质的体积和表面组成及特性变化的影响。当将这些复合材料修饰为在微米级光滑且仅在纳米级粗糙时,P19细胞实际上淹没了PCU下的嗜血菌,延伸或整个细胞体,以便与碳纳米纤维相互作用。这些已配制的碳纳米纤维复合材料是一种有前途的材料,可包覆神经探针,从而增强组织界面的功能。改善的慢性组织相互作用具有减少侵入性介入手术的潜力,并为患有帕金森氏病等病理性疾病的患者提供神经植入带来的持续收益。

著录项

  • 作者

    McKenzie, Janice L.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Biomedical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 230 p.
  • 总页数 230
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号