首页> 外文学位 >An approximate approach to quantum mechanical study of biomacromolecules.
【24h】

An approximate approach to quantum mechanical study of biomacromolecules.

机译:生物大分子量子力学研究的一种近似方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis summarizes the author's major work in Prof. John Z.H. Zhang's Threoretical Chemistry research group. In Chapter 1, we present a general description of MFCC (molecular fractionation with conjugated caps) method that has been developed in this group to treat biomacromolecules in a divide-and-conquer fashion. Then we give in detail a computational study of MFCC application to peptide/protein that contains disulfide bonds. Continued on the basis of previous MFCC tests, this study provides another numerical support for the accuracy of the MFCC approach to full quantum mechanical calculation of protein/peptide-small molecule interaction.; In Chapter 2, we further develop the MFCC scheme for quantum mechanical computation of DNA-ligand interaction energy. We study three oligonuclear acid interaction systems: dinucleotide dCG/water, trinucleotide dCGT/water and a Watson-Crick paired DNA segment dCGT/dGCA. The MFCC interaction energies are found to be in excellent agreement with the corresponding results obtained from the full system ab initio calculations. This study is an exemplification of the application of the general MFCC approach to biomacromolecules.; In Chapter 3, firstly, a MFCC-downhill simplex method is proposed to study binding structures of ligands (atoms, ions, or small molecules) in large molecular complex systems. This method employs the MFCC approach to compute the interaction energy-structure relation of the system and implements the downhill simplex algorithm for structural optimization. Secondly, this method is numerically tested on a system of [KCp(18-crown-6)], as a simplest monatomic case study, to optimize the binding position of the potassium cation in a fixed coordination Cp and 18-crown-6 coordinating sphere. The result of the MFCC-downhill simplex optimization shows good agreement with both the crystal structure and with the full-system downhill simplex optimized structure. The effects of the initial structure of the simplex and of the method/basis-set levels of the quantum chemical calculation on the MFCC-downhill simplex optimization are also discussed. Finally, the MFCC-downhill simplex method is tested, as a general multiatomic case study, on a molecular system of cyclo-AAGAGG·H 2O to optimize the binding structure of water molecule to the fixed cyclohexapeptide. The MFCC-downhill simplex optimization results in good agreement with the crystal structure. The MFCC-downhill simplex method should be applicable to optimize the structures of ligands that bind to biomacromolecules such as proteins and DNAs.; In Chapter 4, we propose a new approximate method for efficient calculation of biomacromolecular electronic properties, using a Density Matrix (DM) scheme which is integrated with the MFCC approach. In this MFCC-DM method, a biomacro-molecule such as a protein is partitioned by an MFCC scheme into properly capped fragments and concaps whose density matrices are calculated by conventional ab initio methods. These sub-system density matrices are then assembled to construct the full system density matrix which is finally employed to calculate the electronic energy, dipole moment, electronic density, electrostatic potential, etc., of the protein using Hartree-Fock or Density Functional Theory methods. By this MFCC-DM method, the self-consistent field (SCF) procedure for solving the full Hamiltonian problem is circumvented. Two implementations of this approach, MFCC-SDM and MFCC-GDM, are discussed. Systematic numerical studies are carried out on a series of extended polyglycines CH3CO-(GLY) n-NHCH3 (n=3-25) and excellent results are obtained.; In Chapter 5, we present an improvement of MFCC-DM method and introduce a pairwise interaction correction (PIC) with which the MFCC-DM method is applicable to study a real-world protein with short-range structural complexity such as hydrogen bonding and close contact. In this MFCC-DM-PIC method, a protein molecule is partitioned into properly capped f
机译:本文总结了作者在John Z.H.教授中的主要工作。张的理论化学研究小组。在第1章中,我们介绍了MFCC(共轭帽的分子分级分离)方法的一般描述,该方法已在该组中开发出来,以分而治之的方式处理生物大分子。然后,我们对MFCC在含二硫键的肽/蛋白质中的应用进行了详细的计算研究。继续在先前的MFCC测试的基础上,本研究为MFCC方法对蛋白质/肽-小分子相互作用的全量子力学计算的准确性提供了另一个数值支持。在第二章中,我们进一步开发了用于DNA-配体相互作用能的量子力学计算的MFCC方案。我们研究了三个寡核糖酸相互作用系统:二核苷酸dCG /水,三核苷酸dCGT /水和沃森-克里克配对的DNA片段dCGT / dGCA。发现MFCC的相互作用能与从整个系统从头算得到的相应结果非常一致。这项研究是一般MFCC方法在生物大分子中应用的例证。在第3章中,首先提出了一种MFCC下坡单纯形法来研究大分子复杂系统中配体(原子,离子或小分子)的结合结构。该方法采用MFCC方法计算系统的相互作用能与结构的关系,并实现了用于结构优化的下坡单纯形算法。其次,作为最简单的单原子案例研究,在[KCp(18-crown-6)]系统上对该方法进行了数值测试,以优化钾阳离子在固定配位Cp和18-crown-6配位中的结合位置球。 MFCC下坡单面优化的结果与晶体结构和整个系统的下坡单面优化结构都显示出良好的一致性。还讨论了单纯形的初始结构以及量子化学计算的方法/基集级别对MFCC下坡单纯形优化的影响。最后,作为一般多原子案例研究,在环AAGAGG·H 2O分子系统上测试了MFCC下坡单纯形法,以优化水分子与固定环六肽的结合结构。 MFCC下坡单面优化与晶体结构具有很好的一致性。 MFCC速降单纯形法应适用于优化与生物大分子(如蛋白质和DNA)结合的配体的结构。在第4章中,我们提出了一种新的近似方法,该方法使用与MFCC方法集成的密度矩阵(DM)方案来有效地计算生物大分子电子性质。在这种MFCC-DM方法中,通过蛋白质MFCC方案将诸如蛋白质之类的生物大分子划分为适当封端的片段和混合物,其密度矩阵通过常规的从头算方法计算。然后组装这些子系统密度矩阵以构建完整的系统密度矩阵,最后使用Hartree-Fock或密度泛函理论方法将其用于计算蛋白质的电子能量,偶极矩,电子密度,静电势等。 。通过这种MFCC-DM方法,可以解决解决完全哈密顿量问题的自洽场(SCF)过程。讨论了这种方法的两种实现,即MFCC-SDM和MFCC-GDM。对一系列扩展的聚甘氨酸CH3CO-(GLY)n-NHCH3(n = 3-25)进行了系统数值研究,并获得了优异的结果。在第5章中,我们介绍了MFCC-DM方法的改进,并介绍了成对相互作用校正(PIC),MFCC-DM方法可用于研究成对蛋白,该蛋白具有短的结构复杂性,例如氢键键合和闭合联系。在这种MFCC-DM-PIC方法中,蛋白质分子被分成适当封端的f

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号