首页> 外文学位 >Reactions of heme catalysts at nanocrystalline titanium dioxide thin film interfaces with organohalide pollutants.
【24h】

Reactions of heme catalysts at nanocrystalline titanium dioxide thin film interfaces with organohalide pollutants.

机译:血红素催化剂在纳米晶二氧化钛薄膜上与有机卤化物污染物的反应。

获取原文
获取原文并翻译 | 示例

摘要

Organohalide compounds are one of major pollutants on Environmental Protection Agency's (EPA) contaminants candidate list (www.epa.gov.safewater ). Chapter 1 represents the overview of environmental detoxification of groundwater contaminants, electron transfer mechanisms, and the advantages of surface modified nanocrystalline TiO2 thin films. Chapter 2 describes the enhanced reactivity of heme/TiO2 compared to heme in fluid solutions. The photoreduction of organohalides, CCl4, CBr4, and CHCl3 and chloroacetanilides alachlor (2-chloro-2',6'-diethyl- N-(methoxymethyl)acetanilide) and propachlor (2-chloro-N -isopropylacetanilide) by iron(II) protoporphyrin IX chloride (heme) in fluid solution and anchored to a mesoporous nanocrystalline (anatase) TiO 2 thin film immersed in solution is reported. The hemes were reacted with organic halides in the dark. Second-order kinetic rate constants of heme/TiO 2 were quantified and were found to be larger than the corresponding rate constants for heme in fluid solution. Chapter 3 explains that the synergy effect of heme/TiO2 is partially due to the negative shifts in the formal reduction potentials of the catalysts upon surface binding. The spectroscopic and redox properties of iron(III) protoporphyrin chloride (hemin) and cobalt(III) meso-tetra(4-carboxyphenyl) porphyrin chloride (CoTCP) were quantified in fluid solution and when anchored to mesoporous nanocrystalline TiO2 thin films. In acetonitrile and dimethyl sulfoxide electrolytes, TiO2 binding was found to induce a substantial negative shift in the MIII/II formal reduction potentials. In DMSO electrolyte, the CoIII/II and FeIII/II potentials were -559 and -727 mV versus ferrocenium/ferrocene (Fc+/Fc) and shifted to -782 and -1063 mV, respectively, after surface binding. For TiO2 pretreated with aqueous solutions from pH 4-9, the CoIII/II potential showed a -66 mV/pH unit change, while the FeIII/II potential of hemin changed by -40 mV/pH from pH 1 to 14. Spectroelectrochemical data gave isosbestic, reversible spectral changes in the visible region assigned to MIII/II redox chemistry with lambdaiso = 410, 460, 530, 545, 568, and 593 nm for CoTCP/TiO2 and lambda iso = 408, 441, 500, 576, and 643 nm for hemin/TiO2. In aqueous solution, the CoTCP reduction potentials were also found to be pH dependent upon surface binding, with CoTCP = -583 mV and CoTCP/TiO2 = -685 mV versus Fc+/Fc at pH 6. For CoTCP/TiO2, the aqueous pH dependence of the potentials was -52 mV/pH. In Chapter 4, photodriven multi-electron transfer (MET) processes are described. Hemin (iron protoporphyrin IX) has been anchored to ∼15 nm TiO2 nanocrystallites (anatase) in ∼8 microm thick mesoporous thin films. Band gap excitation of these materials in methanol or aqueous (pH 4 or 8) solutions leads to the reduction of hemin to heme (FeIII → FeII) and the production of TiO2(e-), heme/TiO2(e-). The mechanisms and second-order rate constants for the reduction of bromobenzene, chlorobenzene, dichlorobenzene, and trichloroethylene were quantified. In all cases, the concentration of TiO2(e-) was found to decrease to near zero before the hemes were oxidized to hemin. Comparative studies with TiO2(e-) that were not functionalized with hemes indicate that organohalide reduction is mediated by the hemes. Reactions of 6-bromo-1-hexene with heme/TiO2(e-) demonstrate multi-electron transfer reactivity and show that heme/TiO 2(e-) nanocrystallites deliver two electrons to RX within 4.5 micros. In Chapter 5, the reactions of heme/TiO2 catalysts in aqueous solution, including reaction orders, MET processes, heme mediated mechanisms, and reaction products, were examined. Hemin was found to bind to mesoporous nanocrystalline (anatase) TiO2 thin films from DMSO solution, Keq = 105 M-1 at 298 K. The reactions of heme/TiO2 with CCl4, CHCl3, propachlor, and trichloroethylene were investigated in methanol, and pH 4 and 8 aqueous solution. The reactions were found to be first-order in h
机译:有机卤化物是环境保护署(EPA)污染物候选清单(www.epa.gov.safewater)上的主要污染物之一。第1章概述了地下水污染物的环境排毒,电子转移机制以及表面改性的纳米TiO2薄膜的优点。第2章介绍了血红素/ TiO2与流体溶液中的血红素相比具有增强的反应性。铁(II)对有机卤化物,CCl4,CBr4和CHCl3和氯乙苯胺丙二胺(2-氯-2',6'-二乙基-N-(甲氧基甲基)乙苯胺)和丙草胺(2-氯-N-异丙基乙酰胺)的光还原据报道原卟啉IX氯化物(血红素)在流体溶液中并锚定在浸入溶液中的中孔纳米晶体(锐钛矿)TiO 2薄膜上。血红素在黑暗中与有机卤化物反应。定量血红素/ TiO 2的二阶动力学速率常数,发现其大于流体溶液中血红素的相应速率常数。第三章解释了血红素/ TiO2的协同作用部分是由于表面结合时催化剂形式还原电位的负移。铁(III)原卟啉氯化铁(血红素)和钴(III)内四(4-羧苯基)卟啉氯化钴(CoTCP)的光谱和氧化还原性质在流体溶液中以及固定在中孔纳米晶体TiO2薄膜上时进行了定量。在乙腈和二甲基亚砜电解质中,发现TiO2的结合会引起MIII / II形式还原电位的大幅负移。在DMSO电解液中,CoIII / II和FeIII / II电位相对于二茂铁/二茂铁(Fc + / Fc)为-559和-727 mV,在表面结合后分别移至-782和-1063 mV。对于用pH 4-9的水溶液预处理的TiO2,CoIII / II电位显示-66 mV / pH单位变化,而血红素的FeIII / II电位从pH 1更改为-40 mV / pH。光谱电化学数据在分配给MIII / II氧化还原化学的可见区域中产生了等吸收的可逆光谱变化,其中CoTCP / TiO2的lambdaiso = 410、460、530、545、568和593 nm,lambda iso = 408、441、500、576和血红素/ TiO2为643 nm。在水溶液中,还发现CoTCP还原电位取决于表面结合的pH,相对于pH 6时的Fc + / Fc,CoTCP = -583 mV,CoTCP / TiO2 = -685 mV。对于CoTCP / TiO2,水溶液的pH依赖性电位为-52 mV / pH。在第4章中,描述了光驱动多电子转移(MET)工艺。血红素(铁原卟啉IX)已被固定在约8微米厚的中孔薄膜中的约15 nm TiO2纳米晶体(锐钛矿)上。这些材料在甲醇或水溶液(pH 4或8)中的带隙激发导致血红素还原为血红素(FeIII→FeII),并生成TiO2(e-),heme / TiO2(e-)。定量了还原溴苯,氯苯,二氯苯和三氯乙烯的机理和二级速率常数。在所有情况下,在血红素被氧化成血红素之前,发现TiO2(e-)的浓度降低到接近零。与未用血红素官能化的TiO2(e-)的比较研究表明,有机卤化物的还原是由血红素介导的。 6-溴-1-己烯与血红素/ TiO2(e-)的反应显示了多电子转移反应性,并表明血红素/ TiO 2(e-)纳米微晶在4.5微米内将两个电子传递给RX。在第5章中,研究了血红素/ TiO2催化剂在水溶液中的反应,包括反应顺序,MET过程,血红素介导的机理和反应产物。发现血红素与DMSO溶液中的介孔纳米晶(锐钛矿)TiO2薄膜结合,在298 K下Keq = 105 M-1。研究了血红素/ TiO2与CCl4,CHCl3,丙草胺和三氯乙烯在甲醇和pH中的反应4和8水溶液。发现该反应是h的一级反应

著录项

  • 作者

    Ito, Tamae.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Chemistry Inorganic.; Environmental Sciences.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;环境科学基础理论;环境污染及其防治;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号