首页> 外文学位 >Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting.
【24h】

Optoelectronic device simulation: Optical modeling for semiconductor optical amplifiers and solid state lighting.

机译:光电器件仿真:半导体光放大器和固态照明的光学建模。

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in optoelectronic devices require sophisticated optical simulation and modeling. These tiny semiconductor device structures, such as semiconductor lasers and light emitting diodes (LED), not only need detailed electrical computation, such as band structure, carrier transportation, and electron-hole recombination under different external voltages, but also require comprehensive optical modeling, such as photon generation and propagation.; Optical modeling also includes waveguide structure calculations, guided mode and leakage mode identification, as well far-field pattern prediction using optical ray tracing. In modeling semiconductor lasers, light emission and propagation can be treated using the single mode of wave optics, the so-called photon propagation equation coupled with carrier transport equations. These differential equations can be numerically solved using the Finite Difference Method (FDM). In the LED modeling, the main tools are based on optical ray tracing, and photons are treated as light emissions with random directions and polarizations. Optical waveguide theory is used to qualitatively analyze photon emissions inside a LED chip, and helps to design the LED device structure.; One important area of semiconductor laser modeling is the optical simulation of the wavelength converter based on semiconductor optical amplifiers (SOA). This wavelength converter is a critical device in optical communication, and it can copy information from one wavelength to anther through cross-gain modulation. Some numerical methods have been developed to model the wavelength conversion. In these methods, solutions are found by solving differential equations in the time domain using FDM. In all previous models, the waveguide internal loss is assumed uniform across the cavity of the SOA, or the gain coefficient is based on the polynomial approximation method, i.e., the gain coefficient is assumed proportional to the difference between the carrier and transparency carrier densities; the differential gain is assumed constant accordingly. This assumption is only valid for wavelengths close to the gain peak wavelength. As a result, high accuracy for wideband wavelength conversion is not guaranteed. We proposed a steady state numerical model of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers. In this model, a new model of the gain coefficient developed by Connelly was applied, which also includes the internal loss variation with the electron carrier density. Each physical variable, such as the carrier density, gain coefficient, differential gain, and internal loss, spatially varies across the SOA cavity and is numerically calculated throughout the device. This model can predicts wavelength-dependent characteristics of a wavelength converter of the SOA in both large and small signal regimes. Some key performance factors of SOA wavelength converters, such as selection of pump and probe wavelengths and power, length of SOA cavities, conversion efficiency and bandwidth, system performance difference between up and down conversions can be modeled and optimized using this numerical model.; Most LED modeling techniques are based on optical ray tracing to predict the light extraction efficiency, and the light extraction efficiency is a critical parameter to evaluate LEDs. Here, we proposed a hybrid method to simulate the lighting efficiency of LED chips, where both guided wave theory and geometric optical ray tracing are applied. Guided wave optics is used to identify guided modes and leakage modes inside the LED active layer, and its device structure can be optimized to increase leakage modes so that the lighting extraction efficiency is improved. On the other hand, Monte Carlo optical ray tracing is used to quantitatively determine optical extraction efficiency. Moreover, this method can model the light distribution and far-field illumination pattern. Both single wavelength LEDs and dual-wav
机译:光电设备的最新进展要求复杂的光学仿真和建模。这些微小的半导体器件结构,例如半导体激光器和发光二极管(LED),不仅需要详细的电学计算,例如带结构​​,载流子传输和在不同外部电压下的电子-空穴复合,而且还需要全面的光学建模,例如光子的产生和传播。光学建模还包括波导结构计算,引导模式和泄漏模式识别以及使用光线跟踪的远场模式预测。在对半导体激光器建模时,可以使用单波光学器件(即所谓的光子传播方程式与载流子传输方程式)来处理光的发射和传播。这些微分方程可以使用有限差分法(FDM)进行数值求解。在LED建模中,主要工具基于光线追踪,并且将光子视为具有随机方向和偏振的光发射。光波导理论用于定性分析LED芯片内部的光子发射,并有助于设计LED器件结构。半导体激光器建模的一个重要领域是基于半导体光放大器(SOA)的波长转换器的光学仿真。该波长转换器是光通信中的关键设备,它可以通过交叉增益调制将信息从一个波长复制到另一个。已经开发出一些数值方法来模拟波长转换。在这些方法中,可以通过使用FDM在时域中求解微分方程来找到解决方案。在所有以前的模型中,假定波导内部损耗在SOA的整个腔内是均匀的,或者增益系数是基于多项式逼近方法的,即假定增益系数与载流子和透明载流子密度之差成正比;因此,假定差分增益恒定。该假设仅对接近增益峰值波长的波长有效。结果,不能保证宽带波长转换的高精度。我们提出了基于交叉增益调制的半导体光放大器中波长转换器的稳态数值模型。在该模型中,应用了由Connelly开发的增益系数的新模型,该模型还包括内部损耗随电子载流子密度的变化。每个物理变量,例如载流子密度,增益系数,差分增益和内部损耗,在整个SOA腔中在空间上变化,并在整个设备中进行数值计算。该模型可以预测在大信号方案和小信号方案中SOA波长转换器的波长相关特性。 SOA波长转换器的一些关键性能因素,例如泵浦和探针波长和功率的选择,SOA腔的长度,转换效率和带宽,上转换和下转换之间的系统性能差异,可以使用此数值模型进行建模和优化。大多数LED建模技术都是基于光线跟踪来预测光提取效率的,而光提取效率是评估LED的关键参数。在这里,我们提出了一种混合方法来模拟LED芯片的照明效率,同时应用了导波理论和几何光学光线追踪。导波光学器件用于识别LED有源层内部的导波模式和泄漏模式,可以优化其器件结构以增加泄漏模式,从而提高采光效率。另一方面,蒙特卡洛(Monte Carlo)光线追踪用于定量确定光提取效率。而且,该方法可以对光分布和远场照明模式进行建模。单波长LED和双波形

著录项

  • 作者

    Wang, Dong-Xue (Michael).;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号