首页> 外文学位 >Application of the DSMC method to high density micro-flows.
【24h】

Application of the DSMC method to high density micro-flows.

机译:DSMC方法在高密度微流中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This research discusses the application of the Direct Simulation Monte Carlo (DSMC) method to flows in Micro Electro Mechanical devices (MEMS) and the Space Shuttle leading edge reinforced Carbon-Carbon destruction due to the chemically active flows. For the MEMS device application an analysis to optimize the shape and the flow parameters of the micronozzle has been provided in order to increase the device performance. For the Space Shuttle wing problem a technique which predicts the microchannel-crack wall destruction rate has been proposed. The technique helps to ensure the safety of the Space Shuttle orbiter and future complex reentry platforms. Careful study of these complex flows requires a comprehensive suite of tools composed of flow solvers capable of accurately predicting the properties of high gradient flows for a wide range of the flow regimes. In this research a robust Direct Simulation Monte Carlo method (DSMC) in combination with its equilibrium version, designated as eDSMC, has been applied to model these two types of internal flows.; A second aspect of the research has to do with an analysis of the errors that are present in the results of a statistical method. In the case of DSMC two types of errors have been distinguished and separately analyzed: statistical errors which naturally occur in a DSMC solution and deterministic errors which depend on the correct choice of the numerical parameters of the scheme, such as time step and cell sizes.; Before considering the application to a real case the proposed computational techniques have been extensively evaluated through a number of test cases, which can be compared with data or previously available numerical solutions. In particular a micronozzle flow has been solved and the results have been compared with the experimental data from Ref. [1] and a microchannel flow for which a solution is also available in Ref. [2]. When possible and practical the obtained solutions are compared with the usual Naiver Stokes results. Different computational techniques used in this research complement each other and provide better inside into the considered problems. The results of the application of the proposed techniques to the real problems shows the potential of the statistical methods when they are applied to the multiscale flow problems. In this research two complex problems have been solved: optimization of micronozzle performance and prediction of micro channel expansion for bare carbon materials exposed to high energy reentry flows. In both cases the numerical results show good agreement with the experimental data obtained at NASA laboratories.; The presented research demonstrates the ability of the proposed statistical methods to model complex 2D and 3D flow configurations which include complex, chemically active boundary conditions. The proposed statistical schemes are inherently stable, computationally effective, and able to employ adaptive computational mesh structure. In many cases they provide further benefits over traditional CFD schemes by simplifying the problem setup.; Further developments of the presented techniques are suggested. In particular a combination of the baseline DSMC and the proposed eDSMC scheme suggests a potential method for effectively solving flows that are multiscale in terms of the Knudsen and Reynolds numbers and exhibit complex physical and chemical phenomena.
机译:这项研究讨论了直接模拟蒙特卡洛(DSMC)方法在微机电设备(MEMS)中的应用以及由于化学活性流导致的航天飞机前缘增强的碳-碳破坏。对于MEMS器件应用,已经进行了分析以优化微喷嘴的形状和流量参数,以提高器件性能。对于航天飞机机翼问题,提出了一种预测微通道裂纹壁破坏率的技术。该技术有助于确保航天飞机轨道飞行器和未来复杂的再入平台的安全。仔细研究这些复杂的流量需要一整套由流量求解器组成的工具,这些工具能够准确地预测各种流量状态下的高梯度流量的特性。在这项研究中,一种鲁棒的直接模拟蒙特卡罗方法(DSMC)及其均衡版本(称为eDSMC)已被用于对这两种内部流进行建模。研究的第二个方面与分析统计方法结果中存在的错误有关。在DSMC的情况下,已区分并分别分析了两种类型的错误:DSMC解决方案中自然发生的统计错误和取决于方案数字参数的正确选择的确定性错误,例如时间步长和像元大小。 ;在考虑将其应用于实际案例之前,已通过许多测试案例对所提议的计算技术进行了广泛的评估,这些测试案例可与数据或先前可用的数值解进行比较。特别是,已经解决了微喷嘴流,并将结果与​​参考文献中的实验数据进行了比较。 [1]和微通道流,参考文献中也提供了解决方案。 [2]。在可行的情况下,将获得的解决方案与通常的Naiver Stokes结果进行比较。本研究中使用的不同计算技术相互补充,并为所考虑的问题提供了更好的内部。所提出的技术应用于实际问题的结果表明了将统计方法应用于多尺度流动问题的潜力。在这项研究中,解决了两个复杂的问题:微喷嘴性能的优化和暴露于高能折返流的裸碳材料的微通道扩展预测。在这两种情况下,数值结果均显示与NASA实验室获得的实验数据吻合良好。提出的研究证明了所提出的统计方法能够建模复杂的2D和3D流动配置的能力,其中包括复杂的化学活性边界条件。所提出的统计方案本质上稳定,计算有效,并且能够采用自适应计算网格结构。在许多情况下,它们通过简化问题设置而提供了优于传统CFD方案的更多优势。建议了提出的技术的进一步发展。尤其是,基线DSMC和建议的eDSMC方案的组合提出了一种有效解决Knudsen和Reynolds数呈多尺度并表现出复杂的物理和化学现象的流的潜在方法。

著录项

  • 作者

    Titov, Evgeny V.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 153 p.
  • 总页数 153
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号