首页> 外文学位 >Development of optimal energy infrastructures for the oil sands industry in a carbon dioxide-constrained world.
【24h】

Development of optimal energy infrastructures for the oil sands industry in a carbon dioxide-constrained world.

机译:在二氧化碳受限的世界中,为油砂行业开发最佳的能源基础设施。

获取原文
获取原文并翻译 | 示例

摘要

Western Canadian bitumen is becoming a predominant source of energy for North American markets. The bitumen extraction and upgrading processes in the oil sands industry require vast quantities of energy, in the form of power, H2, steam, hot water, diesel fuel, and natural gas. These energy commodities are almost entirely produced using fossil feedstocks/fuels, which results in significant CO2 atmospheric emissions.; CO2 capture and storage (CCS) technologies are recognized as viable means to mitigate CO2 emissions. Coupling CCS technologies to H2 and power plants can drastically reduce the CO2 emissions intensity of the oil sands industry. The CO2 streams from such plants can be used in Enhanced Oil Recovery, Enhanced Coal Bed Methane, and underground CO2 storage. The above CO2 sinks currently exist in Alberta and roughly half of its territory is deemed suitable for geological storage of CO2.; This study investigates the relationship between energy demands, energy costs and CO2 emissions associated with current and proposed oil sands operations using various energy production technologies. Accordingly, two computer models have been developed to serve as energy planning and economic optimization tools for the public and private sectors. The first model is an industry-wide mathematical model, called the Oil Sands Operations Model (OSOM). It serves to quantify the demands for power, H2, steam, hot water, process fuel, and diesel fuel of the oil sands industry for given production levels of bitumen and synthetic crude oil (SCO), by mining and/or thermal extraction techniques. The second model is an optimal economic planning model for large-scale energy production featuring CCS technologies to reduce CO2 emissions in the oil sands industry. Its goal is to feasibly answer the question: What is the optimal combination of energy production technologies, feedstocks, and CO2 capture processes to use in the oil sands industry that will satisfy energy demands at minimal cost while attaining CO2 reduction targets for given SCO and bitumen production levels?; In 2003, steam, H2, and power production are the leading sources of CO2 emissions, accounting for approximately 80% of the total emissions of the oil sands industry. The CO2 intensities calculated by the OSOM range from 0.080 to 0.087 tonne CO2 eq/bbl for SCO and 0.037 tonne CO2 eq/bbl for bitumen. The energy costs in 2003 are {dollar}13.63/bbl and {dollar}5.37/bbl for SCO and bitumen, respectively.; The results from the OSOM indicate that demands for steam, H2, and power will catapult between 2003 and 2030. Steam demands for thermal bitumen extraction will triple between 2003-2012 and triple again between 2012-2030. The H2 demands of the oil sands industry will triple by 2012 and grow by a factor of 2.7 thereafter. Power demands will roughly double between 2003 and 2012 and increase by a factor of 2.4 by 2030.; The optimal energy infrastructures featured in this work reveal that natural gas oxyfuel and combined-cycle power plants plus coal gasification H2 plants with CO2 capture hold the greatest promise for optimal CO2-constrained oil sands operations.; In 2012, the maximum CO2 reduction level attainable with the optimal infrastructure is 25% while in 2030 this figure is 39% with respect to "business as usual" emissions. The optimal energy costs at maximum CO2 reduction in 2012 are {dollar}21.43/bbl (mined SCO), {dollar}22.48/bbl (thermal SCO) and {dollar}7.86/bbl (bitumen). In 2030, these costs are {dollar}29.49/bbl (mined SCO), {dollar}31.03/bbl (thermal SCO), and {dollar}10.32/bbl (bitumen). CO2 transport and storage costs account for between 2-5% of the total energy costs of SCO and are negligible in the case of bitumen.; The optimal energy infrastructures are mostly insensitive to variations in H2 and power plant capital costs. The energy costs are sensitive to changes in natural gas prices and insensitive to changes in coal prices. Variations in CO2 transport and storage costs
机译:加拿大西部沥青正成为北美市场的主要能源。油砂工业中的沥青提取和提质过程需要大量能源,包括能源,H2,蒸汽,热水,柴油燃料和天然气。这些能源商品几乎全部使用化石原料/燃料生产,导致大量的二氧化碳排放。 CO2捕获和存储(CCS)技术被认为是减轻CO2排放的可行方法。将CCS技术与H2和发电厂耦合可以大大降低油砂行业的CO2排放强度。来自此类工厂的二氧化碳流可用于强化采油,强化煤层气和地下二氧化碳封存。目前,以上的CO2汇存在于艾伯塔省,被认为适合于二氧化碳的地质封存。这项研究调查了能源需求,能源成本和二氧化碳排放之间的关系,这些需求与使用各种能源生产技术的当前和拟议的油砂作业相关。因此,已经开发了两种计算机模型以用作公共和私营部门的能源计划和经济优化工具。第一个模型是行业范围内的数学模型,称为油砂运营模型(OSOM)。通过采矿和/或热萃取技术,它可以量化给定沥青和合成原油(SCO)生产水平下油砂行业对动力,氢气,蒸汽,热水,工艺燃料和柴油的需求。第二种模型是采用CCS技术减少油砂行业CO2排放的大规模能源生产的最佳经济计划模型。其目标是可行地回答以下问题:在油砂行业中使用的能源生产技术,原料和CO2捕集工艺的最佳组合是什么,它将以最小的成本满足能源需求,同时实现给定的SCO和沥青的CO2减排目标生产水平? 2003年,蒸汽,氢气和电力生产是二氧化碳排放的主要来源,约占油砂行业总排放量的80%。通过OSOM计算得出的CO2强度,SCO为0.080至0.087吨CO2当量/桶,沥青为0.037吨CO2当量/桶。 SCO和沥青在2003年的能源成本分别为13.63美元/桶和5.37美元/桶。 OSOM的结果表明,对蒸汽,氢气和电力的需求将在2003年至2030年之间猛增。对热沥青提取的蒸汽需求在2003-2012年间将增加三倍,在2012-2030年间将再次增加三倍。到2012年,油砂行业对H2的需求将增长三倍,此后增长2.7倍。电力需求在2003年至2012年期间将大约翻一番,到2030年将增长2.4倍。这项工作中展示的最佳能源基础设施表明,天然气富氧燃料和联合循环发电厂以及具有CO2捕集功能的煤气化H2电厂具有最佳的CO2约束油砂运营前景。 2012年,最佳基础设施可实现的最大二氧化碳减排水平为25%,而到2030年,相对于“一切照旧”排放,这一数字将达到39%。在2012年最大程度减少CO2的情况下,最佳能源成本为21.43美元/桶(开采的SCO),22.48美元/桶(热SCO)和7.86美元/桶(沥青)。在2030年,这些成本分别为29.49美元/桶(开采的SCO),31.03美元/桶(热SCO)和10.32美元/桶(沥青)。二氧化碳的运输和储存成本约占上海合作组织总能源成本的2%至5%,而在沥青方面则可以忽略不计。最佳的能源基础设施通常对氢气和电厂资本成本的变化不敏感。能源成本对天然气价格的变化敏感,对煤炭价格的变化不敏感。二氧化碳运输和储存成本的变化

著录项

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Engineering Mining.; Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 199 p.
  • 总页数 199
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 矿业工程;石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号