首页> 外文学位 >Hybrid chitosan-alginate scaffolds for bone and cartilage tissue engineering.
【24h】

Hybrid chitosan-alginate scaffolds for bone and cartilage tissue engineering.

机译:用于骨骼和软骨组织工程的杂合壳聚糖-海藻酸盐支架。

获取原文
获取原文并翻译 | 示例

摘要

The regeneration of new bone or cartilage to restore the function of traumatized, damaged, or lost bone or cartilage is a major clinical and socioeconomic burden. In recent years, a new cutting-edge procedure, bone- and cartilage-tissue engineering, has emerged as a new strategy for healing musculoskeletal conditions. In this strategy, progenitors or mature cells are combined with biocompatible scaffolds to initiate partial or full bone and/or cartilage regeneration.; Scaffolding materials in tissue engineering should be bioactive and biodegradable. The synthetic polymers, such as PLA and PGA, are biodegradable, but not bioactive. Furthermore, their bulky degradation style and induction of foreign body reaction limit their clinical applications. Chitosan and alginate, two natural polymers, have proven to be biodegradable and bioactive for bone and cartilage regeneration. In this study, high-concentration (4.8% w/v) chitosan-alginate hybrid scaffolds were successfully synthesized through a thermally-induced phase separation technique. The produced hybrid scaffold was thoroughly characterized for mechanical and biological properties and compared to pure chitosan scaffolds of the same concentration and similar porosity. The main pore sizes of the porous hybrid scaffolds was found to be 50--300 mum, which can be controlled through freezing and coalescence processes. The hybrid scaffolds demonstrated significantly-improved mechanical strength, water permeability and stability compared to pure chitosan scaffolds at increased porosity (92-95% vs. 87-89%).; The in vitro study showed that the hybrid scaffold induced better cell attachment and proliferation rate, and maintained the functionality of the cells better than chitosan scaffolds. The hybrid scaffolds were also shown to promote the biomineralization of MG-63 osteoblast and the production of collagen type II, and maintain the characteristic cell morphology of chondrocytes. In vivo study showed that the hybrid scaffolds were biocompatible and degradable, and, promoted rapid vascularization, deposited connective tissue, and calcified matrix within the whole scaffold structure. The results support the potential applications of chitosan-alginate scaffolds as an alternative to other natural polymer-based scaffolds in tissue engineering. This study provides insights to the principles of interactions between biodegradable composite materials and biological systems, and the information for fabrication of scaffolds of different mechanical strengths for desired clinical applications.; Key words: tissue engineering, chitosan, alginate, lyophilization (freeze drying), bone, cartilage
机译:新的骨骼或软骨的再生以恢复受创伤的,受损的或丢失的骨骼或软骨的功能是主要的临床和社会经济负担。近年来,作为治疗肌肉骨骼疾病的新策略,出现了一种新的尖端方法,即骨骼和软骨组织工程。在这种策略中,祖细胞或成熟细胞与生物相容性支架结合以启动部分或全部骨骼和/或软骨再生。组织工程中的脚手架材料应具有生物活性和生物可降解性。合成聚合物(例如PLA和PGA)是可生物降解的,但不具有生物活性。此外,它们庞大的降解方式和异物反应的诱导限制了它们的临床应用。壳聚糖和藻酸盐是两种天然聚合物,已被证明具有生物可降解性,并且对骨骼和软骨的再生具有生物活性。在这项研究中,通过热诱导相分离技术成功地合成了高浓度(4.8%w / v)的壳聚糖-海藻酸盐混合支架。所生产的杂种支架的机械和生物学特性得到了充分的表征,并与相同浓度和孔隙率的纯壳聚糖支架进行了比较。多孔杂种支架的主要孔径为50--300微米,可通过冷冻和聚结过程进行控制。与纯壳聚糖支架相比,在增加的孔隙率下,混合支架表现出显着改善的机械强度,透水性和稳定性(92-95%比87-89%)。体外研究表明,杂化支架比壳聚糖支架诱导更好的细胞附着和增殖速率,并更好地维持细胞功能。杂种支架还显示出可促进MG-63成骨细胞的生物矿化和II型胶原的产生,并保持软骨细胞的特征细胞形态。体内研究表明,杂种支架具有生物相容性和可降解性,可促进整个支架结构内的快速血管形成,结缔组织沉积和钙化基质。结果支持了壳聚糖-海藻酸盐支架作为组织工程中其他天然聚合物支架的替代品的潜在应用。这项研究为可生物降解的复合材料和生物系统之间相互作用的原理提供了见识,并为所需的临床应用提供了不同机械强度的支架制造信息。关键词:组织工程,壳聚糖,藻酸盐,冻干(冷冻干燥),骨骼,软骨

著录项

  • 作者

    Li, Zhensheng.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Biomedical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 177 p.
  • 总页数 177
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号