首页> 外文学位 >Rheology, structure, and properties of new phosphate glass/polymer hybrids.
【24h】

Rheology, structure, and properties of new phosphate glass/polymer hybrids.

机译:新型磷酸盐玻璃/聚合物杂化物的流变学,结构和性能。

获取原文
获取原文并翻译 | 示例

摘要

Physical modification of structure and properties via polymer blending and reinforcement is a common practice in the plastics industry and has a large economic advantage over synthesizing new polymeric materials to fulfill new material needs. Despite the large amount of interest in polymer blends and composites, the currently available commercial materials cannot satisfy the growing need for new advanced materials. This need is being addressed in part by inorganic/organic hybrid materials. By blending low-TG phosphate glasses with polymeric materials, a new class of inorganic/organic hybrids can be created. These hybrids can be processed conventionally with glass loadings of up to 60% by volume or 90% by weight, making it possible to obtain significant improvements in properties that are impossible to achieve from classical polymer blends and composites. This class of inorganic/organic hybrids containing both the inorganic low-TG phosphate glass (Pglass) and the organic polymer are very unique materials because both hybrid components are fluid during processing. Thereby, providing the ability to tailor both the hybrid morphology and properties in unprecedented ways through carefully controlled processing.; This dissertation discusses the continuing research into low-Tg tin fluorophosphate glass blended with commodity resins. The specific resins of interest are low density polyethylene (LDPE), polyamide 12, and polyamide 6. The shear rheology and the extensional flow characteristics of LDPE hybrids were studied to understand hybrid behavior under flow characteristics typical of many polymer processing techniques. The elongational flow was also utilized to generate unique morphologies, enhance crystallinity, and to alter polymer chain orientation. The extension of this field into interacting commodity resins like polyamide 12 and polyamide 6 yielded new hybrids with unprecedented properties. Polyamide 12 hybrids were used to build the first processing/structure/property relationships for hybrid materials. The effect of processing speed on the crystalline properties, as well as, the tensile mechanical properties was determined. Further studies of Pglass/polyamide 12 hybrids examined their rheological behavior under conditions that the materials are likely to encounter during processing and use. The application of a theoretical viscoelastic emulsion model pointed to a high degree of interaction between the Pglass and polymer phases at elevated temperatures. By changing the polymer to polyamide 6, the sites for potential interaction between the Pglass and the polymer chains was effectively doubled. This yielded the first evidence of melt-miscibility between the inorganic Pglass and an organic polymer. The high degree of interaction also yielded counter-intuitive mechanical properties and glass transition temperature effects described in this dissertation. The effect of Pglass on the glass transition temperature of polyamide 6 was further studied using advanced nuclear magnetic resonance spectroscopy and broadband dielectric spectroscopy, generating fundamental insights into the molecular origins of the unique properties observed for these hybrids. Overall, the experiments suggest that more complicated theories that explicitly take into account the Pglass/polymer interactions, shape factor, and size distributions of the dispersed Pglass phase may be necessary for more accurate modeling of these special hybrid systems with enhanced benefits. Additionally, the new knowledge gained should provide useful guidelines for future experimental studies and theory development of the little-studied phosphate glass/polymer hybrid systems.
机译:通过聚合物共混和增强对结构和性能进行物理改性是塑料行业的一种常见做法,并且在合成新的聚合物材料以满足新材料需求方面具有巨大的经济优势。尽管对聚合物共混物和复合材料有极大的兴趣,但是目前可用的商业材料不能满足对新的先进材料的增长的需求。无机/有机杂化材料部分地满足了这种需求。通过将低TG磷酸盐玻璃与聚合物材料混合,可以创建一类新型的无机/有机杂化材料。这些杂化物可以按常规按高达60体积%或90重量%的玻璃负载量进行加工,从而有可能获得性能的显着改善,而这是传统的聚合物共混物和复合材料无法实现的。包含无机低TG磷酸盐玻璃(Pglass)和有机聚合物的此类无机/有机杂化材料是非常独特的材料,因为两种杂化组分在加工过程中都是流体。因此,通过仔细控制的处理过程,以前所未有的方式提供了对混合形态和特性的定制能力。本文讨论了低掺量商品名低掺锡锡氟磷酸盐玻璃的研究。感兴趣的特定树脂是低密度聚乙烯(LDPE),聚酰胺12和聚酰胺6。研究了LDPE杂化体的剪切流变学和拉伸流动特性,以了解许多聚合物加工技术所特有的流动特性下的杂化性能。伸长流也用于产生独特的形态,增强结晶度并改变聚合物链的取向。该领域的扩展到诸如聚酰胺12和聚酰胺6的相互作用商品树脂中,产生了具有前所未有性能的新型混合材料。聚酰胺12杂化物用于建立杂种材料的第一个加工/结构/性质关系。确定了加工速度对结晶性能以及拉伸机械性能的影响。对Pglass /聚酰胺12杂化物的进一步研究在材料在加工和使用过程中可能遇到的条件下检查了它们的流变行为。理论粘弹性乳液模型的应用指出了高温下Pglass和聚合物相之间的高度相互作用。通过将聚合物更改为聚酰胺6,Pglass和聚合物链之间潜在相互作用的位点实际上得到了加倍。这提供了无机Pglass与有机聚合物之间可熔融混溶的第一个证据。高度的相互作用还产生了违反直觉的机械性能和本文所述的玻璃化转变温度效应。使用先进的核磁共振光谱和宽带介电光谱进一步研究了Pglass对聚酰胺6的玻璃化转变温度的影响,从而产生了对这些杂化物所观察到的独特性质的分子起源的基本认识。总体而言,实验表明,可能需要更复杂的理论来明确考虑Pglass /聚合物的相互作用,形状因子和Pglass分散相的尺寸分布,才能对这些具有优势的特殊混合系统进行更准确的建模。此外,获得的新知识应为对磷酸酯玻璃/聚合物混合体系研究较少的未来实验研究和理论发展提供有用的指导。

著录项

  • 作者

    Urman, Kevin Leonard.;

  • 作者单位

    The University of Southern Mississippi.;

  • 授予单位 The University of Southern Mississippi.;
  • 学科 Chemistry Polymer.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号