首页> 外文学位 >Dimensional variation analysis and optimal process design for non-rigid sheet metal assemblies.
【24h】

Dimensional variation analysis and optimal process design for non-rigid sheet metal assemblies.

机译:非刚性钣金件的尺寸变化分析和最佳工艺设计。

获取原文
获取原文并翻译 | 示例

摘要

Non-rigid sheet metal assembly is widely used in manufacturing industries, such as aerospace and automotive industries. Improving product quality and reducing the cost are main concerned issues for a manufacturing company to achieve higher product competitiveness in current global market. The dimensional quality of a non-rigid sheet metal assembly is a crucial and yet challenging quality indicator due to the non-rigidity of the sheet metal components. Although the product dimensional variation analysis and process design for rigid assembly have been studied for many years, such study for non-rigid assemblies is emerging, and also challenging. There remain many unrecognized and/or unsolved issues in the study of non-rigid assemblies. This thesis presents a number of new, systematical, and generally applicable methods for analyzing and minimizing the non-rigid sheet metal assembly variations.; Firstly, a novel fractal-based method for sheet metal assembly variation analysis is developed to deal with the fractal variations of parts (i.e., component of an assembly). The surface microstructure of part variation is modeled by fractal geometry and its influence on the final assembly variation is studied by modeling the sheet metal assembly process.; Next, a new methodology based on wavelet transform is proposed for analyzing the contribution of variation components with various scales to the final assembly dimensional variation, considering possible sources of variation from both parts and the assembly process. It is more general and advantageous than the approach based on the fractal geometry. The integrated procedure of wavelet transform and Finite Element Method (FEM) for non-rigid assembly variation analysis is developed and implemented. Its effectiveness is demonstrated via an application example.; Thirdly, a simultaneous optimization method for fixture layout and joint positions is developed. The optimization variables from both the product design (assembly joint positions) and the production plan (the fixture layout) are included in the mathematical model. The mode-pursuing sampling method (MPS) is modified and employed to search for the global optimal solution.; Finally, the elastic contact phenomenon in the sheet metal assembly process is studied. A non-linear assembly dimensional variation analysis method is developed by establishing the elastic contact model between the assembly surfaces. The assembly dimensional variation analysis with and without contact modeling is respectively conducted. The corresponding physical experiments are also carried out and used to validate the contact FEM models.; The work enables us to gain more in-depth understanding on the characteristics of the non-rigid sheet metal assembly dimensional variation. It provides not only the fundamental analysis and modeling methodologies, but also the corresponding software tools that can be easily integrated with most current general-purpose commercial FEA packages (such as ANSYS and CATIA). The developed approaches, technologies and tools presented in this thesis can benefit both the academic research and industrial applications on the design and manufacturing of non-rigid sheet metal assemblies.
机译:非刚性钣金组件广泛用于制造行业,例如航空航天和汽车行业。改善产品质量和降低成本是制造公司在当前全球市场上获得更高产品竞争力的主要关注问题。由于钣金部件的非刚性,非刚性钣金组件的尺寸质量是至关重要且具有挑战性的质量指标。尽管已经研究了用于刚性组装的产品尺寸变化分析和工艺设计很多年,但是对于非刚性组装的这种研究正在兴起,并且也具有挑战性。在非刚性装配体的研究中仍然存在许多未认识和/或尚未解决的问题。本文提出了许多新的,系统的,普遍适用的方法来分析和最小化非刚性钣金件装配变化。首先,开发了一种新颖的基于分形的钣金装配变化分析方法,以处理零件(即装配的零部件)的分形变化。通过分形几何模型对零件变化的表面微观结构进行建模,并通过对钣金装配过程进行建模来研究其对最终装配变化的影响。接下来,提出了一种基于小波变换的新方法,用于分析各种比例的变化分量对最终装配尺寸变化的影响,同时考虑零件和装配过程中可能产生变化的原因。它比基于分形几何的方法更为通用和有利。开发并实现了小波变换和有限元方法(FEM)的非刚性装配变化分析的集成程序。通过一个应用实例证明其有效性。第三,开发了一种同时优化夹具布置和接头位置的方法。来自产品设计(装配接头位置)和生产计划(夹具布置)的优化变量都包括在数学模型中。修改了模式寻求采样方法(MPS),并用于寻找全局最优解。最后,研究了钣金装配过程中的弹性接触现象。通过建立装配面之间的弹性接触模型,发展出非线性装配尺寸变化分析方法。分别进行有接触模型和无接触模型的装配尺寸变化分析。还进行了相应的物理实验,并用于验证接触有限元模型。这项工作使我们对非刚性钣金装配尺寸变化的特征有了更深入的了解。它不仅提供了基本的分析和建模方法,还提供了可以轻松地与大多数当前通用通用商业FEA软件包(例如ANSYS和CATIA)集成的相应软件工具。本文提出的先进方法,技术和工具可以有益于非刚性钣金件设计和制造的学术研究和工业应用。

著录项

  • 作者

    Liao, Xiaoyun.;

  • 作者单位

    University of Manitoba (Canada).;

  • 授予单位 University of Manitoba (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 103 p.
  • 总页数 103
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:40:21

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号