首页> 外文学位 >Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells.
【24h】

Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells.

机译:用于固体氧化物燃料电池的La2-xSrxNiO 4 +δ电极的氧还原动力学。

获取原文
获取原文并翻译 | 示例

摘要

In the development of intermediate temperature solid oxide fuel cell (IT-SOFC), mixed ionic-electronic conductors (MIEC) have drawn big interests due to their both ionic and electronic species transport which can enlarge the 3-dimension of the cathode network. This thesis presents an investigation of MIEC of Ruddlesden-popper (RP) phases like K2NiF4 type La2NiO4+delta (LNO)-based oxides which have interesting transport, catalytic properties and suitable thermal expansion coefficients. The motivation of this present work is to further understand the fundamental of the effect of Sr doing on the oxygen reduction reaction (ORR) kinetics of LNO cathode.;Porous symmetrical cells of La2-xSrxNiO4+delta (0≤x≤0.4) were fabricated and characterized by electrochemical impedance spectroscopy (EIS) in different PO2 from temperature range of 600∼800°C. The spectra were analyzed based on the impedance model introduced by Adler et al. The rate determining steps (RDS) for ORR were proposed and the responsible reasons were discussed. The overall polarization resistances of doped samples increase with Sr level. Surface oxygen exchange and bulk ionic diffusion co-control the ORR kinetics. With high Sr content (x=0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed.;However for porous symmetrical cells it is hard to associate the resistance from EIS directly to each ORR elementary processes because of the difficulty in describing the microstructure of the porous electrode. The dense electrode configuration was adopted in this thesis. By using the dense electrode, the surface area, the thickness of electrode, the interface between electrode and electrolyte and lastly the 3PB are theoretically well-defined. Through this method, there is a good chance to distinguish the contribution of surface exchange from other processes. Dense and thin electrode layers in thickness of ∼40 mum are fabricated by using a novel spray modified pressing method. Negligible bulk diffusion resistance is confirmed by parallel experiment and EIS analysis, resulting in exclusive focus on the surface process. It is ambiguously proved that Sr doping impairs the surface kinetics of lanthanum nickelates. The interstitial oxygen is suggested to be the key role when the oxygen incorporation is rat determining. For the first time, a physical model is proposed to illustrate how those interstitial species work to regulate the exchange rate of the incorporation reaction.;To achieve better surface exchange ability on LNO, Mn is chosen as the doping element substituted for Ni with different levels to improve the surface kinetics because Mn is much active both for adsorption process and for incorporation process due to the high state of Mn leading to the high amount of the interstitial oxygen. Mn is found to substantially promote the surface kinetics, showing highest surface exchange coefficient (k) of 1.57x10-6cm/s at 700°C on composition of La1.8Sr0.2Ni0.9 Mn0.1O4+delta. Such value is ∼80% larger than that of the undoped sample, and is one of the highest k among the currently available R-P phase intermediate temperature (IT) cathode.
机译:在中温固体氧化物燃料电池(IT-SOFC)的开发中,混合离子电子导体(MIEC)由于其离子和电子物质传输都可以扩大阴极网络的3维尺寸而引起了人们的极大兴趣。本文研究了Ruddlesden-popper(RP)相的MIEC,如K2NiF4型La2NiO4 +δ(LNO)基氧化物,它们具有有趣的传输,催化性能和合适的热膨胀系数。本研究的目的是进一步了解Sr对LNO阴极的氧还原反应(ORR)动力学的影响的基本原理。制备了La2-xSrxNiO4 +δ(0≤x≤0.4)的多孔对称电池并通过电化学阻抗谱(EIS)在600至800°C温度范围内的不同PO2中进行表征。基于Adler等人介绍的阻抗模型对光谱进行了分析。提出了ORR的速率确定步骤(RDS),并讨论了造成这种情况的原因。掺杂样品的整体极化电阻随Sr含量的增加而增加。表面氧交换和本体离子扩散共同控制ORR动力学。在高Sr含量(x = 0.3,0.4)下,观察到镍酸盐/电解质之间的氧离子转移阻力;但是对于多孔对称电池,由于难以描述,难以将EIS的电阻直接与每个ORR基本过程联系起来多孔电极的微观结构。本文采用致密电极结构。通过使用致密的电极,在理论上可以很好地定义表面积,电极厚度,电极与电解质之间的界面以及最后的3PB。通过这种方法,有很好的机会将表面交换的贡献与其他过程区分开。通过使用新型的喷涂改性压制方法,可以制造厚度约40微米的致密且薄的电极层。平行实验和EIS分析证实了可忽略不计的体扩散抗性,因此只专注于表面处理。明确地证明,Sr掺杂会损害镍酸镧的表面动力学。当确定大鼠的吸氧量时,间隙氧被认为是关键作用。首次提出了一种物理模型来说明这些间隙物种如何调节掺入反应的交换速率。为了在LNO上实现更好的表面交换能力,选择了Mn作为不同含量的Ni替代的掺杂元素。由于Mn的高状态导致大量的间隙氧,因此Mn在吸附过程和掺入过程中都具有很高的活性,因此可以改善表面动力学。发现Mn基本上促进了表面动力学,在La1.8Sr0.2Ni0.9 Mn0.1O4 +δ的组成下,在700°C下显示出最高的表面交换系数(k)为1.57x10-6cm / s。该值比未掺杂样品的值大80%,并且是当前R-P相中间温度(IT)阴极中最高的k之一。

著录项

  • 作者

    Guan, Bo.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Materials science.;Mechanical engineering.
  • 学位 M.S.
  • 年度 2016
  • 页码 65 p.
  • 总页数 65
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号