首页> 外文学位 >Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials.
【24h】

Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials.

机译:开发先进的有机光电和光子纳米材料的分子迁移率。

获取原文
获取原文并翻译 | 示例

摘要

Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models.; This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.
机译:光电活性有机材料已在先进技术中显示出巨大潜力,这些先进技术包括用于宽带通信的超快光电开关,发光二极管和光伏电池。当前,化学合成的成熟使得能够将活性元素复杂地整合到复杂的大分子中。同样,隔离的单个电/光有源元件的结构-特性关系也得到了很好的建立。不幸的是,涉及单个分子的这种相关性不适用于复杂的非结构化的缩合系统,在该系统中存在独特的中尺度性质和超/超分子结构的复杂动力学。我们当前的挑战尤其是由于缺乏适当的表征工具而无法弥补现象学测量与理论模型之间的差距。这项工作解决与光致发光聚合物和非线性光学(NLO)材料的光电功能有关的亚分子迁移率。因此,我将介绍基于扫描力显微镜的新型纳米级热机械表征工具。通过纳米尺度的热机械测量,可以推断出新型光电材料的亚分子/超分子迁移率,并在一定程度上加以控制。例如,我们已经探索了界面约束作为控制分子迁移率的工程工具。这将用电致发光聚合物来说明,电致发光聚合物由于所有共轭聚合物固有的棒状结构而易于发生不希望的pi-pi聚集。纳米级限制用于降低链的迁移性,因此阻碍了不希望的聚集,因此产生了优异的光谱稳定性。从纳米材料设计的角度来看,我还将针对目标分子设计解决迁移率控制问题。这涉及两类新型的NLO材料:侧链树枝状聚合物和自组装分子玻璃。由于结构复杂性,侧链树枝状聚合物是自约束体系。我们的热力学研究表明,与NLO侧链相关的局部弛豫模式是使活性元素具有高迁移率的关键设计参数。考虑到NLO分子玻璃相互作用的非常特殊的性质,即苯基/全氟苯基四聚对的形成和解离,从热力学的角度讨论了涉及焓和熵的自组装分子玻璃的弛豫过程。

著录项

  • 作者

    Gray, Tomoko O.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Chemistry Polymer.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号