首页> 外文学位 >Genetically engineered adaptive resonance theory (ART) neural network architectures.
【24h】

Genetically engineered adaptive resonance theory (ART) neural network architectures.

机译:基因工程自适应共振理论(ART)神经网络体系结构。

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy ARTMAP (FAM) is currently considered to be one of the premier neural network architectures in solving classification problems. One of the limitations of Fuzzy ARTMAP that has been extensively reported in the literature is the category proliferation problem. That is, Fuzzy ARTMAP has the tendency of increasing its network size, as it is confronted with more and more data, especially if the data is of noisy and/or overlapping nature. To remedy this problem a number of researchers have designed modifications to the training phase of Fuzzy ARTMAP that had the beneficial effect of reducing this phenomenon.; In this thesis we propose a new approach to handle the category proliferation problem in Fuzzy ARTMAP by evolving trained FAM architectures. We refer to the resulting FAM architectures as GFAM. We demonstrate through extensive experimentation that an evolved FAM (GFAM) exhibits good (sometimes optimal) generalization, small size (sometimes optimal size), and requires reasonable computational effort to produce an optimal or suboptimal network. Furthermore, comparisons of the GFAM with other approaches, proposed in the literature, which address the FAM category proliferation problem, illustrate that the GFAM has a number of advantages (i.e. produces smaller or equal size architectures, of better or as good generalization, with reduced computational complexity).; Furthermore, in this dissertation we have extended the approach used with Fuzzy ARTMAP to other ART architectures, such as Ellipsoidal ARTMAP (EAM) and Gaussian ARTMAP (GAM) that also suffer from the ART category proliferation problem. Thus, we have designed and experimented with genetically engineered EAM and GAM architectures, named GEAM and GGAM. Comparisons of GERM and GGAM with other ART architectures that were introduced in the ART literature, addressing the category proliferation problem, illustrate similar advantages observed by GFAM (i.e., GEAM and GGAM produce smaller size ART architectures, of better or improved generalization, with reduced computational complexity).; Moreover, to optimally cover the input space of a problem, we proposed a genetically engineered ART architecture that combines the category structures of two different ART networks, FAM and EAM. We named this architecture UART (Universal ART). We analyzed the order of search in UART, that is the order according to which a FAM category or an EAM category is accessed in UART. This analysis allowed us to better understand UART's functionality. Experiments were also conducted to compare UART with other ART architectures, in a similar fashion as GFAM and GEAM were compared. Similar conclusions were drawn from this comparison, as in the comparison of GFAM and GEAM with other ART architectures.; Finally, we analyzed the computational complexity of the genetically engineered ART architectures and we compared it with the computational complexity of other ART architectures, introduced into the literature. This analytical comparison verified our claim that the genetically engineered ART architectures produce better generalization and smaller sizes ART structures, at reduced computational complexity, compared to other ART approaches. In review, a methodology was introduced of how to combine the answers (categories) of ART architectures, using genetic algorithms. This methodology was successfully applied to FAM, EAM and FAM and EAM ART architectures, with success, resulting in ART neural networks which outperformed other ART architectures, previously introduced into the literature, and quite often produced ART architectures that attained optimal classification results, at reduced computational complexity.
机译:模糊ARTMAP(FAM)当前被认为是解决分类问题的主要神经网络体系结构之一。文献中已广泛报道的模糊ARTMAP的局限性之一是类别扩散问题。即,由于模糊ARTMAP面临越来越多的数据,尤其是当数据具有噪声和/或重叠性质时,其具有增大其网络规模的趋势。为了解决这个问题,许多研究人员设计了对Fuzzy ARTMAP训练阶段的修改,这些修改具有减少这种现象的有益效果。本文提出了一种新的方法,通过发展训练有素的FAM架构来处理Fuzzy ARTMAP中的类别扩散问题。我们将最终的FAM架构称为GFAM。通过广泛的实验,我们证明了演进的FAM(GFAM)表现出良好的(有时是最优的)泛化,小的尺寸(有时是最优的尺寸),并且需要合理的计算工作才能产生最优或次优的网络。此外,针对文献中提出的针对FAM类别扩散问题的GFAM与其他方法的比较,表明GFAM具有许多优点(即,产生较小或相等大小的体系结构,具有更好或相同的泛化性,同时减少了计算复杂度)。此外,在本文中,我们将与模糊ARTMAP一起使用的方法扩展到其他ART架构,例如椭圆ARTMAP(EAM)和高斯ARTMAP(GAM),它们也遭受ART类别扩散问题。因此,我们设计并尝试了名为GEAM和GGAM的基因工程EAM和GAM体系结构。将GERM和GGAM与ART文献中介绍的其他ART架构进行比较,以解决类别扩散问题,说明了GFAM所观察到的相似优势(即GEAM和GGAM产生了尺寸更小的ART架构,具有更好的通用性或改进了的通用性,同时减少了计算量复杂)。;此外,为了最佳地覆盖问题的输入空间,我们提出了一种基因工程的ART架构,该架构结合了两个不同的ART网络(FAM和EAM)的类别结构。我们将此架构命名为UART(通用ART)。我们分析了UART中的搜索顺序,即在UART中访问FAM类别或EAM类别的顺序。这项分析使我们可以更好地了解UART的功能。还进行了实验,以比较GFAM和GEAM的方式将UART与其他ART架构进行比较。从这种比较中得出类似的结论,就像GFAM和GEAM与其他ART架构的比较一样。最后,我们分析了基因工程ART架构的计算复杂度,并将其与文献中介绍的其他ART架构的计算复杂度进行了比较。这种分析比较证实了我们的主张,即与其他ART方法相比,基因工程ART架构可在降低计算复杂性的情况下产生更好的概括性和更小的ART结构。在回顾中,介绍了一种使用遗传算法将ART体系结构的答案(类别)组合在一起的方法。该方法已成功应用于FAM,EAM和FAM和EAM ART体系结构,并获得了成功,从而导致ART神经网络的性能优于先前引入文献中的其他ART体系结构,并且经常产生的ART体系结构在降低分类性能的同时获得了最佳的分类结果。计算复杂度。

著录项

  • 作者

    Al-Daraiseh, Ahmad A.;

  • 作者单位

    University of Central Florida.;

  • 授予单位 University of Central Florida.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 234 p.
  • 总页数 234
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号