首页> 外文学位 >Fuel-nitrogen oxides formation during low-grade fuel combustion in a swirling-flow burner.
【24h】

Fuel-nitrogen oxides formation during low-grade fuel combustion in a swirling-flow burner.

机译:在涡流燃烧器中低级燃料燃烧过程中形成燃料氮氧化物。

获取原文
获取原文并翻译 | 示例

摘要

Insufficient knowledge of fireside behavior in the near-burner region during biomass combustion is one of major factors preventing widespread use of this renewable fuel in pulverized coal power plants. The current research is aimed to investigate the impact of biomass cofiring on NO formation in the near-burner region through interpretation of computational fluid dynamics (CFD) predictions and data collected from a series of biomass tests in a pilot-scale (0.2 MW), swirling flow burner.; Two-dimensional gas species mole fraction data were collected with state-of-the-art instruments from nine experiments, composing one herbaceous biomass (straw), one woody biomass (sawdust), a low sulfur sub-bituminous coal (Blind Canyon) and a high sulfur bituminous coal (Pittsburgh #8) and their mixtures of different mass fractions with the same swirl setting. Velocity and temperature are calculated from CFD modeling with FLUENT(TM), supplemented with hot-wire anemometer measurements. For the first time, a reverse flow region was predicted during solid fuel combustion simulations for the reactor used.; Interpretation of the results was carried on with two original methods: stoichiometric maps and normalized species mole fraction profiles. The impacts of biomass on combustion in the swirling flows were analyzed from several aspects: aerodynamics, fuel properties (particle size, volatile content, and fix-carbon content), and NO formation routes.; The species maps show the low-grade fuel combustion under swirling flows is composed of two zones: a high species-gradient combustion region attached to the inlet and flat-profiles dominant across the rest of the reactor. Results from tests involving biomass clearly demonstrate the expansion of the combustion region. CFD calculations demonstrate that there is no obvious alteration of the reverse-flow region by biomass combustion. The larger average particle size of biomass generates a combustion region with further penetration into the reactor.; In certain tests involving biomass, more NH3 than HCN was detected in several biomass experiments, though limited by the data collection method and low fuel-nitrogen fuels used (sawdust). Supplemented with kinetic calculations with CHEMKIN, it was found that NO formation is dependent on the nitrogen forms in the parent fuels.
机译:对生物质燃烧过程中靠近燃烧器区域的炉边行为的了解不足是阻止这种可再生燃料在粉煤电厂中广泛使用的主要因素之一。当前的研究旨在通过解释计算流体动力学(CFD)预测和从一系列中试规模(0.2 MW)的生物质测试收集的数据来研究生物质共烧对近燃区NO形成的影响,旋流燃烧器。使用来自9个实验的先进仪器收集二维气体物种的摩尔分数数据,包括一种草本生物质(稻草),一种木质生物质(木屑),低硫亚烟煤(Blind Canyon)和高硫烟煤(匹兹堡#8)及其具有相同旋流设置的不同质量分数的混合物。速度和温度是通过使用FLUENT™的CFD建模计算出来的,并补充了热线风速计的测量值。首次在所用反应堆的固体燃料燃烧模拟过程中预测了逆流区域。结果的解释采用两种原始方法进行:化学计量图和归一化物种摩尔分数分布图。从以下几个方面分析了生物质对旋流中燃烧的影响:空气动力学,燃料特性(颗粒大小,挥发物含量和固定碳含量)以及NO的形成途径。物种图显示,涡流下的低级燃料燃烧由两个区域组成:连接到入口的高物种梯度燃烧区域和整个反应堆其余部分占主导地位的平面轮廓。涉及生物质的测试结果清楚地表明了燃烧区域的扩大。 CFD计算表明,生物质燃烧不会明显改变逆流区域。生物质的较大平均粒度产生燃烧区域,并进一步渗透到反应器中。在某些涉及生物质的测试中,尽管受到数据收集方法和使用的低燃料氮燃料(木屑)的限制,但在一些生物质实验中检测到的NH3比HCN多。补充使用CHEMKIN进行的动力学计算,发现NO的形成取决于母体燃料中的氮形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号