首页> 外文学位 >Enhanced limbic network excitation in the pilocarpine animal model of temporal lobe epilepsy
【24h】

Enhanced limbic network excitation in the pilocarpine animal model of temporal lobe epilepsy

机译:颞叶癫痫毛状松果动物模型中增强的边缘网络兴奋

获取原文
获取原文并翻译 | 示例

摘要

Through the use of chronic experimental animal models, the majority of in vitro investigations of temporal lobe epilepsy have demonstrated enhanced network activity within the subdivisions of the hippocampal formation. However, clinical evidence in combination with in vivo and in vitro studies indicates that structures external to the hippocampus contribute to the genesis of seizure activity. To address the effects of limbic network excitation, I have utilized combined hippocampal---entorhinal cortex brain slices from pilocarpine-treated rats that display chronic seizures.;My investigations have focused upon three structures, the subiculum, entorhinal cortex and the insular cortex. The experiments in the pilocarpine-treated subiculum demonstrated increased network excitability that was attributed to a more positive GABAA receptor mediated inhibitory post-synaptic potential (IPSP) reversal point coupled with a reduced IPSP peak conductance. Utilizing RT-PCR analysis and immunohistochemical staining we observed a decline in K+-Cl- cotransporter mRNA expression and a reduced number of parvalbumin-positive, presumptive inhibitory interneurons. My second project assessed the network hyperexcitability in layer V of the lateral entorhinal cortex. This is the first study to report spontaneous bursting, in the absence of epileptogenic agents, in the epileptic entorhinal cortex. We attributed this level of network excitation to reduced GABAA receptor mediated inhibition and increased synaptic sprouting. In the final project, we extended our slice preparation to include the insular cortex, a structure external to the temporal lobe. Our investigations identified a mechanism of NMDA receptor dependent synaptic bursting that masked GABA A receptor mediated conductances.
机译:通过使用慢性实验动物模型,大多数颞叶癫痫的体外研究表明,在海马结构细分内网络活动增强。然而,结合体内和体外研究的临床证据表明,海马外部的结构有助于癫痫发作的发生。为了解决边缘网络兴奋的影响,我利用了经匹罗卡品治疗的大鼠表现出慢性癫痫发作的海马-内嗅皮层组合脑片。我的研究集中在三个结构,下丘脑,内嗅皮层和岛状皮层。经毛果芸香碱处理的亚细观的实验表明,网络兴奋性增强,这归因于GABAA受体介导的抑制性突触后电位(IPSP)逆转点的阳性反应,以及IPSP峰值电导降低。利用RT-PCR分析和免疫组化染色,我们观察到K + -Cl-共转运蛋白mRNA表达下降,小白蛋白阳性,推测性抑制性中间神经元数量减少。我的第二个项目评估了外侧内嗅皮层V层的网络过度兴奋性。这是第一个报告在没有致癫痫药的情况下癫痫性内嗅皮层自发性破裂的研究。我们将这一水平的网络激发归因于减少的GABAA受体介导的抑制作用和增加的突触发芽。在最后的项目中,我们将切片准备工作扩展到包括颞叶外部结构的岛状皮层。我们的研究确定了NMDA受体依赖性突触爆发的机制,该机制掩盖了GABA A受体介导的电导。

著录项

  • 作者

    de Guzman, Philip Henry.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Neurosciences.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号