首页> 外文学位 >A theoretical investigation of the microsolvation of multivalent ions in clusters.
【24h】

A theoretical investigation of the microsolvation of multivalent ions in clusters.

机译:簇中多价离子微溶剂化的理论研究。

获取原文
获取原文并翻译 | 示例

摘要

Trivalent lanthanide metals (Ln3+) are among the most spectroscopically active ions in the periodic table and are characterized by their exceptional ability to absorb and emit light in the ultraviolet, visible and near infra-red regions of the electromagnetic spectrum. These ions are sensitive to the nature of their ligands, as has been evidenced from their spectral properties in different environments. In an effort to predict the behaviour of lanthanide ions in different environments, solvated Ln 3+ ions in clusters, Ln3+(solvent)n, were investigated as a model system. Cluster studies provide an ideal means of monitoring progressive changes in the properties of the lanthanide ions with cluster size increases. The electronic, energetic and thermodynamic properties of Ln3+(H2O)n and Ln3+(CH 3CN)n clusters were simulated using a combination of quantum chemistry calculations, model potential development and Monte Carlo simulations, paying close attention to possible cluster-to-bulk transitions.;The Ln3+(H2O)n cluster binding enthalpies were found to be quite large, even at small cluster size, implying that these species should be stable under experimental conditions. However, small clusters have rarely been observed experimentally when they contain protic solvents and charge-reduced clusters, where the metal loses its 3+ charge, are observed instead. Thus, Eu3+(H2O)n cluster deprotonation was investigated as a possible explanation for the lack of experimental observation of small Ln3+(H2O)n clusters. The small clusters were found to favour loss of (solvated) hydronium ions from the cluster, explaining the experimentally-observed, charge-reduced clusters. Only recently (June 2006) was the experimental observation of large Ln3+(H 2O)n clusters (n > 15) reported. This is consistent with our prediction that deprotonation becomes less favourable with cluster size.;Finally, investigation of Ln3+(CH3CN) n clusters, using a similar methodology, reveals that formation of these clusters is also energetically favourable and that convergence to bulk, structural and thermodynamic properties are obtained at smaller cluster sizes than those observed in water clusters. Given that the thermodynamic properties of Ln 3+(CH3CN)n and large Ln3+(H 2O)n clusters have yet to be determined, the results herein may serve as benchmarks for future experimentation.;The properties of small Ln3+(H2O)n clusters obtained from quantum chemistry calculations indicate, much akin to other multi-valent Mq+(H2O)n clusters, that the metal ion-water interactions are predominantly electrostatic. Mutual polarization of both the ion and the water molecules accounts for the large Ln3+(H2O)n cluster binding energies and the resulting structural properties of the clusters. The quantum chemistry results were the basis for designing and parameterising polarizable model potentials for use in Monte Carlo simulations. The simulations revealed that bulk-like properties of Ln3+(H2O)n clusters, namely first-shell coordination numbers and bulk thermodynamic properties, are obtained at very large cluster sizes (n ≥ 64), thus showing that cluster studies are a good model for studying bulk solvation.
机译:三价镧系金属(Ln3 +)是元素周期表中具有最强光谱活性的离子,其特征在于它们在电磁光谱的紫外线,可见光和近红外区具有出色的吸收和发射光的能力。这些离子对其配体的性质敏感,这已从它们在不同环境中的光谱特性得到了证明。为了预测镧系元素离子在不同环境中的行为,研究了簇中的溶剂化Ln 3+离子Ln3 +(solvent)n作为模型系统。团簇研究提供了一种理想的手段,可随着团簇尺寸的增加而监测镧系元素离子性质的逐步变化。 Ln3 +(H2O)n和Ln3 +(CH 3CN)n团簇的电子,能量和热力学性质是通过结合量子化学计算,模型势能发展和蒙特卡洛模拟来模拟的,并密切关注可能的团簇到团簇转变Ln3 +(H2O)n簇结合焓被发现相当大,即使簇尺寸很小,这意味着这些物质在实验条件下应该是稳定的。但是,当含有质子溶剂时,很少能观察到小团簇,而可以观察到电荷减少的团簇,其中金属会失去3+电荷。因此,对Eu3 +(H2O)n团簇去质子化进行了研究,以作为缺乏对Ln3 +(H2O)n团簇的实验观察的缺乏的可能解释。发现小簇有利于从簇中损失(溶剂化的)水合氢离子,这解释了实验观察到的,电荷减少的簇。直到最近(2006年6月)才报道了大型Ln3 +(H 2O)n团簇(n> 15)的实验观察。这与我们对去质子化对簇尺寸的不利影响的预测相符。最后,使用相似的方法对Ln3 +(CH3CN)n簇进行研究表明,这些簇的形成在能量上也有利,并且会聚到整体,结构和结构上。与在水团簇中观察到的相比,在更小的团簇尺寸下获得热力学性质。鉴于尚未确定Ln 3+(CH3CN)n和大Ln3 +(H 2O)n团簇的热力学性质,此处的结果可作为将来实验的基准。从量子化学计算获得的结果表明,与其他多价Mq +(H2O)n团簇非常相似,金属离子与水的相互作用主要为静电。离子和水分子的相互极化解释了大的Ln3 +(H2O)n团簇结合能以及由此产生的团簇结构特性。量子化学结果是设计和参数化可极化模型电势以用于蒙特卡洛模拟的基础。模拟结果表明,在非常大的团簇尺寸(n≥64)下,可获得Ln3 +(H2O)n团簇的团状性质,即第一壳配位数和团簇热力学性质,因此表明团簇研究是一个很好的模型。研究大量溶剂化。

著录项

  • 作者

    Hughes, Sean.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Inorganic chemistry.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号