首页> 外文学位 >Physical conditions and chemical processes during single-bubble sonoluminescence.
【24h】

Physical conditions and chemical processes during single-bubble sonoluminescence.

机译:单泡声致发光过程中的物理条件和化学过程。

获取原文
获取原文并翻译 | 示例

摘要

In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.
机译:为了深入了解与单气泡声致发光(SBSL)相关的物理条件和化学过程,人们探索了非挥发性液体,例如浓硫酸(H2SO 4)。发现H2SO 4水溶液产生的SBSL辐射功率比水产生的SBSL的辐射功率大103倍以上。此外,发射光谱还包含来自分子,原子和离子的宽谱带和谱线。原子(20 eV)和离子(37 eV)的高能态填充提供了确定的等离子体形成的实验证据。通过使用各种技术(例如,将小分子和原子用作腔内探针,等离子诊断的标准方法和高温测定的光谱方法),可以量化重粒子温度(15,000 K),重粒子密度(1021 cm) -3)和压力(4,000 bar),以及在SBSL中由H2SO4产生的等离子体电子密度(1018 cm -3)。还发现,将含有稀有气体和空气的H2SO4混合物中的SBSL淬火至临界声压,在该声压以上,辐射功率增加了104。从光谱图中可以确定,空气限制了加热和吸热形成的等离子体化学反应和能量转移反应。在含有H2SO4的碱金属硫酸盐中对SBSL进行同时的频闪和光谱研究表明,气泡动力学的剧烈变化与非挥发性物质(如Na和K原子)的发射开始有关。这些影响归因于随着气泡平移速度的增加界面不稳定性的发展。

著录项

  • 作者

    Flannigan, David J.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Physical chemistry.;Plasma physics.;Acoustics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 381 p.
  • 总页数 381
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号