首页> 外文学位 >Nozzle erosion characterization and minimization for high-pressure rocket motor applications.
【24h】

Nozzle erosion characterization and minimization for high-pressure rocket motor applications.

机译:高压火箭发动机应用中的喷嘴腐蚀特性和最小化。

获取原文
获取原文并翻译 | 示例

摘要

Understanding of the processes that cause nozzle throat erosion and developing methods for mitigation of erosion rate can allow higher operating pressures for advanced rocket motors. However, erosion of the nozzle throat region, which is a strong function of operating pressure, must be controlled to realize the performance gains of higher operating pressures. The objective of this work was the study the nozzle erosion rates at a broad range of pressures from 7 to 34.5 MPa (1,000 to 5,000 psia) using two different rocket motors. The first is an instrumented solidpropellant motor (ISPM), which uses two baseline solid propellants; one is a non-metallized propellant called Propellant S and the other is a metallized propellant called Propellant M. The second test rig is a non-metallized solid-propellant rocket motor simulator (RMS). The RMS is a gas rocket with the ability to vary the combustion-product species composition by systematically varying the flow rates of gaseous reactants. Several reactant mixtures were utilized in the study to determine the relative importance of different oxidizing species (such as H2O, OH, and CO2). Both test rigs are equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle test section for both motors can also incorporate a nozzle boundary-layer control system (NBLCS) as a means of nozzle erosion mitigation. The effectiveness of the NBLCS at preventing nozzle throat erosion was demonstrated for both the RMS and the ISPM motors at chamber pressures up to 34 MPa (4930 psia). All tests conducted with the NBLCS showed signs of coning of the propellant surface, leading to increased mass burning rate and resultant chamber pressure.;Two correlations were developed for the nozzle erosion rates from solid propellant testing, one for metallized propellant and one for non-metallized propellants. The non-metallized propellant correlation also incorporates the RMS data, accounting for swirling flow of the products in the RMS combustor. These correlations are useful for rocket nozzle designs. The correlation for non-metallized propellant and RMS firings was developed in terms of the effective oxidizer mass fraction and effective Reynolds number. The results calculated from this correlation were compared with measured erosion rate data within +/-15% or 0.05 mm/s (2 mils/s). For metallized propellant, the nozzle erosion rate was found to be relatively independent of the concentration of oxidizing species due to the diffusion-controlled process and the partial surface coverage by the liquid Al/Al2O3 layer. The nozzle erosion rate was also found to be lower than those of non-metallized propellant cases. Agreement between predicted and measured erosion rates was found to be within +/-20% or 0.04 mm/s (2 mils/s).
机译:了解引起喷嘴喉部腐蚀的过程以及缓解腐蚀速率的方法,可以为先进的火箭发动机提供更高的工作压力。然而,必须控制喷嘴喉部区域的侵蚀,这是工作压力的重要函数,以实现更高工作压力的性能增益。这项工作的目的是研究使用两种不同的火箭发动机在7至34.5 MPa(1,000至5,000 psia)的宽压力范围内的喷嘴侵蚀率。第一种是仪表化固体推进剂发动机(ISPM),它使用两种基准固体推进剂。一个是称为推进剂S的非金属化推进剂,另一个是称为推进剂M的金属化推进剂。第二个测试台是非金属化固体推进剂火箭发动机模拟器(RMS)。 RMS是一种燃气火箭,具有通过系统地改变气态反应物流速来改变燃烧产物种类组成的能力。该研究中使用了几种反应物混合物来确定不同氧化性物质(例如H2O,OH和CO2)的相对重要性。两种测试设备均配备有窗口式喷嘴部分,用于实时X射线射线照相术诊断瞬时喉咙变化,以推断瞬时侵蚀率。两种电机的喷嘴测试部分还可以包含喷嘴边界层控制系统(NBLCS),作为减轻喷嘴腐蚀的一种手段。对于RMS和ISPM电机,在腔室压力高达34 MPa(4930 psia)的情况下,都证明了NBLCS可以防止喷嘴喉咙腐蚀。使用NBLCS进行的所有测试均显示推进剂表面呈锥状,从而导致燃烧质量增加和所产生的燃烧室压力增加;;对于固体推进剂测试的喷嘴侵蚀率建立了两种相关性,一种用于金属化推进剂,一种用于非金属推进剂。金属化推进剂。非金属化的推进剂相关性也合并了RMS数据,这说明了RMS燃烧器中产品的旋流。这些相关性对于火箭喷嘴设计很有用。根据有效的氧化剂质量分数和有效的雷诺数建立了非金属化推进剂和RMS点火的相关性。将根据这种相关性计算出的结果与测得的腐蚀速率数据(+/- 15%或0.05毫米/秒(2密耳/秒))进行比较。对于金属化推进剂,由于扩散控制过程和液态Al / Al2O3层的部分表面覆盖,发现喷嘴的腐蚀速率相对独立于氧化物质的浓度。还发现喷嘴侵蚀率低于非金属化推进剂情况。发现预计腐蚀速率与测量腐蚀速率之间的一致性在+/- 20%或0.04 mm / s(2 mils / s)内。

著录项

  • 作者

    Evans, Brian.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Aerospace.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 241 p.
  • 总页数 241
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号