首页> 外文学位 >Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials.
【24h】

Electro-optic and magneto-dielectric properties of multifunctional nitride and oxide materials.

机译:多功能氮化物和氧化物材料的电光和磁电介质特性。

获取原文
获取原文并翻译 | 示例

摘要

Materials that simultaneously exhibit different physical properties provide a rich area of research leading to the development of new devices. For example, materials having a strong coupling between charge and spin degrees of freedom are essential to realizing a new class of devices referred to generally as spintronics. However, these multifunctional systems pose new scientific challenges in understanding the origin and mechanisms for cross-control of different functionalities. The core of this Ph.D. dissertation deals with multifunctional nitride and oxide compound semiconductors as well as multiferroic magnetic oxide systems by investigating structural, optical, electrical, magnetic, magnetodielectric and magnetoelectric properties.;Thin films of InN nitride compound semiconductors and closely related alloys have been investigated to understand the effects of intrinsic defects on the materials properties while considering possible applications of highly degenerate InN thin films. As grown rf sputtered InN films on c-axis (0001) sapphire exhibit highly degenerate n-type behaviour due to oxygen defects introduced during growth. The effect of oxygen in InN matrix has been further investigated by intentionally adding oxygen into the films. These studies confirm that oxygen is one of the main sources of donor electrons in degenerate InN. Above some critical concentration of oxygen, secondary phases of In 2O3 and In-O-N complexes were formed. It was also possible to tune the carrier concentration to produce changes in the plasmon frequency, which varied from 0.45 eV to 0.8 eV. This characteristic energy scale suggests that these highly degenerate InN thin films could be used for thermophotovoltaic cells, optical filters, and other IR electro-optic applications.;To probe the magnetism in transition metal doped InN system, In 0.98Cr0.02N and In0.95Cr0.05N thin films were fabricated. Our results suggest that these films develop ferromagnetic order above room temperature with a spin polarization of ∼40% +/- 5%, suggesting strong correlation between electron carriers and observed ferromagnetism.;Another In-based multifunctional material that has been explored is defect-rich In2O3. This system exhibits numerous interesting properties such as being simultaneously transparent and electrically conducting and above room temperature ferromagnetism together with semiconducting properties. The oxygen stoichiometry in In2O3 plays a crucial role in determining its optical, electronic, and magnetic properties. The effect of oxygen vacancies on different physical properties has been investigated. Our results suggest that as grown, nearly stoichiometric In2O 3 thin films exhibit strong photopersistent current with very long carrier lifetime. Heat treatment under reduced oxygen environment creates oxygen vacancies in these films, producing electron donors. Thus vacuum annealed In2O 3 becomes a highly degenerate n-type conductor. Oxygen deficient In 2O3 can be used as transparent conducting oxide without any further doping, which allows the conductivity to be switched reversibly by thermal annealing in air or vacuum. In addition highly oxygen deficient In 2O3 films exhibit ferromagnetism above room temperature.;We have also investigated oxide based magnetoelectric multiferroics which show simultaneous magnetic and ferroelectric properties. This study included detailed investigations of YMnO3, Ni3V2O 8 and FeVO4, where we have investigated FeVO4 a new multiferroic system in the vanadate family. The main focus of this project was to understand the microscopic origin of the magnetoelectric coupling and cross-control of different ferroic order parameters in these system. We have synthesized bulk Ni3V2O8 and FeVO4 ceramics and characterized the thermal, magnetic, dielectric and magnetodielectric response of these samples in bulk form. To understand the cross-control of magnetic and ferroelectric order parameter we deposited thin films of Ni 3V2O8 and FeVO4 systems and investigated their multiferroic properties using dielectric spectroscopy. We have demonstrated the direct control of multiferroic transition temperature with the applied external electric and magnetic fields. These investigations confirm the strong magnetoelectric coupling between different ferroic order parameters in such multifunctional multiferroic systems.
机译:同时展现出不同物理特性的材料提供了广泛的研究领域,导致了新设备的开发。例如,在电荷和自旋自由度之间具有强耦合的材料对于实现通常被称为自旋电子学的新型器件是必不可少的。但是,这些多功能系统在理解不同功能的交叉控制的起源和机制方面提出了新的科学挑战。该博士学位的核心通过研究结构,光,电,磁,磁二电和磁电性能,研究了多功能氮化物和氧化物化合物半导体以及多铁磁性氧化物系统。研究了InN氮化物化合物半导体薄膜和紧密相关的合金,以了解其作用。考虑材料的固有缺陷,同时考虑高度退化的InN薄膜的可能应用。随着生长的射频在c轴(0001)上溅射InN膜,蓝宝石由于在生长过程中引入的氧缺陷而表现出高度简并的n型行为。通过有意向薄膜中添加氧气,可以进一步研究氧气在InN基体中的作用。这些研究证实,氧是简并InN中供体电子的主要来源之一。在高于氧气的一些临界浓度时,形成了In 2O3和In-O-N络合物的第二相。还可以调节载流子浓度,以产生等离激元频率的变化,其变化范围为0.45 eV至0.8 eV。这种特征性的能量规模表明,这些高度退化的InN薄膜可用于热光电电池,滤光片和其他IR电光应用。为了探测掺有过渡金属的InN系统In 0.98Cr0.02N和In0的磁性。制备了95Cr0.05N薄膜。我们的结果表明,这些薄膜在室温以上会形成铁磁有序,自旋极化约为40%+/- 5%,表明电子载流子与所观察到的铁磁性之间具有很强的相关性。另一种已探究的In基多功能材料是缺陷-富含In2O3。该系统表现出许多有趣的特性,例如同时透明和导电以及高于室温铁磁性以及半导体特性。 In2O3中的氧化学计量在确定其光学,电子和磁性方面起着至关重要的作用。已经研究了氧空位对不同物理性质的影响。我们的结果表明,随着生长,接近化学计量的In2O 3薄膜表现出很强的光致持久电流,并具有非常长的载流子寿命。在降低的氧气环境下进行热处理会在这些薄膜中产生氧气空位,从而产生电子供体。因此,真空退火的In 2 O 3成为高度退化的n型导体。可以在没有任何其他掺杂的情况下将2O3中的缺氧氧化物用作透明导电氧化物,这可以通过在空气或真空中进行热退火来可逆地转换电导率。此外,高度缺氧的In 2O3薄膜在室温以上会表现出铁磁性。;我们还研究了同时具有磁性和铁电性质的基于氧化物的磁电多铁。这项研究包括对YMnO3,Ni3V2O 8和FeVO4的详细研究,其中我们研究了钒酸盐家族中新的多铁性体系FeVO4。该项目的主要重点是了解磁电耦合的微观起源以及这些系统中不同铁性有序参数的交叉控制。我们已经合成了块状Ni3V2O8和FeVO4陶瓷,并表征了这些块状样品的热,磁,介电和磁电响应。为了了解磁和铁电有序参数的交叉控制,我们沉积了Ni 3V2O8和FeVO4系统的薄膜,并使用介电谱研究了它们的多铁性。我们已经证明了通过施加外部电场和磁场可以直接控制多铁性转变温度。这些研究证实了在这种多功能多铁性系统中不同铁性有序参数之间的强磁电耦合。

著录项

  • 作者

    Dixit, Ambesh.;

  • 作者单位

    Wayne State University.;

  • 授予单位 Wayne State University.;
  • 学科 Physics Condensed Matter.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 242 p.
  • 总页数 242
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号