首页> 外文学位 >Investigation of ultracold rubidium atoms in a pulsed far off resonance trap.
【24h】

Investigation of ultracold rubidium atoms in a pulsed far off resonance trap.

机译:脉冲远共振阱中超冷rub原子的研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation reports on the design, construction, and investigation of a pulsed optical dipole force trap which uses laser light to confine ultracold rubidium (Rb) atoms. Because the laser frequency is detuned far from the atomic resonance frequency, the optical dipole force trap is also called a "far-off-resonance trap" (FORT). The use of pulsed laser light to create an optical trap may find application in expanding the number of atomic species which can be confined. The experiments reported here are principally aimed, however, at understanding the physics of pulsed FORT dynamics in anticipation of using the free electron laser (FEL) at Jefferson Lab (Jlab) to construct a FORT. The Jlab FEL will provide a tunable, high power laser light source enabling the realization of spatially large and/or energetically deep traps which are not presently accessible with table-top laser sources. Here, a mode-locked Nd:YAG laser is used as a pulsed laser source. Since the conservative optical dipole force trap does not cool Rb atoms, ultracold atoms must be loaded into the FORT. The optical dipole force trap is formed at the focus of a Gaussian, 1.06 mum Nd:YAG laser beam which is located at the center of a high vacuum chamber and superimposed onto the center of a pre-cooled Rb atom cloud that has been previously accumulated in a magneto-optic trap (MOT). The performance of the pulsed FORT is compared to a continuous wave mode (cw) FORT which is built using the same laser beam; the operation of the two kinds of FORTs can be switched easily without disturbing the experimental alignment. The dependencies of FORT loading efficiency to FORT and MOT parameters such as FORT laser power, loading time, storage/holding time, detuning of the primary MOT laser frequency, and repump laser intensity are investigated. There are about 1.5x10 7 ultracold rubidium atoms in the MOT. At 7 Watts FORT laser power, about 8% of the atoms are loaded successfully into the cw FORT and about 5% into the pulsed FORT under similar, but not identical, conditions. In most respects both the cw and pulsed FORTs show comparable behavior. The behavior of both FORTs depends strongly on FORT laser power. As expected, at higher power, more atoms can be loaded into the FORT. Both FORTs also depend on the loading time and holding time. (Abstract shortened by UMI.)
机译:本文报道了利用激光束缚超冷rub(Rb)原子的脉冲光学偶极力阱的设计,构造和研究。由于激光频率的失谐远离原子共振频率,因此光学偶极力阱也被称为“远共振共振阱”(FORT)。使用脉冲激光产生光阱可以发现在扩大可以被限制的原子种类的数量方面的应用。但是,这里报道的实验主要目的是在杰斐逊实验室(Jlab)使用自由电子激光(FEL)构造FORT时,了解脉冲FORT动力学的物理原理。 Jlab FEL将提供一个可调谐的高功率激光光源,从而能够实现空间大和/或能量深的陷阱,而这些陷阱目前是台式激光源无法实现的。在此,锁模的Nd:YAG激光器用作脉冲激光源。由于保守的光学偶极力阱不会冷却Rb原子,因此必须将超冷原子加载到FORT中。光学偶极子力陷阱形成在高真空1.06微米Nd:YAG激光束的焦点上,该激光束位于高真空腔室的中心并叠加在预先已蓄积的预冷Rb原子云的中心上在磁光阱(MOT)中。将脉冲式FORT的性能与使用相同激光束构建的连续波模式(cw)FORT进行比较;两种FORT的操作可以轻松切换,而不会干扰实验对准。研究了FORT加载效率与FORT和MOT参数(如FORT激光功率,加载时间,存储/保持时间,主MOT激光频率的失谐和再注入激光强度)的相关性。 MOT中大约有1.5x10 7个超冷rub原子。在7瓦的FORT激光功率下,在相似但不完全相同的条件下,大约8%的原子成功地加载到cw FORT中,大约5%的原子被成功加载到脉冲FORT中。在大多数方面,CW和脉冲FORT都表现出可比的性能。两个FORT的行为在很大程度上取决于FORT激光功率。如预期的那样,以更高的功率,可以将更多的原子加载到FORT中。两个FORT也取决于加载时间和保持时间。 (摘要由UMI缩短。)

著录项

  • 作者

    Minarni, Minarni.;

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Physics Molecular.; Physics Atomic.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 119 p.
  • 总页数 119
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号