首页> 外文学位 >Adaptive hot-spot cooling of integrated circuits using digital microfluidics.
【24h】

Adaptive hot-spot cooling of integrated circuits using digital microfluidics.

机译:使用数字微流控技术对集成电路进行自适应热点冷却。

获取原文
获取原文并翻译 | 示例

摘要

Thermal management is a critical issue in integrated circuit (IC) design. With each new IC technology generation, feature sizes decrease, while operating speeds and package densities increase. These factors contribute to elevated die temperatures detrimental to circuit performance and reliability. Furthermore, hot-spots due to spatially non-uniform heat flux in ICs can cause physical stress that further reduces reliability. A number of techniques to address these issues have been proposed to date, yet most are unable to handle the varying thermal profile of an IC due to their inherent lack of reconfigurability.; In this thesis, we introduce two alternative cooling architectures based upon a "digital microfluidic" platform. In a flow-through approach, cooling droplets are actuated independently via electrowetting through user-defined reprogrammable flow paths and speeds. This high level of reconfigurability enables us to create an "adaptive" hot-spot cooling module that can be affixed directly onto the IC itself, whereby the system reconfigures itself on-the-fly in response to a changing thermal profile. In a programmable thermal switch approach, an array of liquid-metal droplets can be manipulated such that any area in the cooling device can be selectively switched from a low-to-high or high-to-low thermal conductivity mode. In this way, a higher heat flux can be drawn away from the hot-spot, resulting in a uniform thermal profile.; This thesis first studies the temperature-dependent behavior of digital microfluidic systems. It is shown that the transport of droplets immersed in oil is facilitated at elevated temperatures. Various hot-spot cooling prototypes were designed, based on a coplanar electrowetting scheme developed to simplify fabrication and assembly steps. For flow-through based systems, cooling prototypes were used to demonstrate the closed-loop dispensing, transport, and recycling of droplets necessary for adaptive cooling. Heat transfer using moving droplets is shown to improve significantly for higher mass flow rates and heat flux densities. However, while the proof-of-concept for this flow-through technique was successfully demonstrated, the maximum flow-rates using current prototypes appear to be insufficient in view of the high heat-flux densities in today's IC devices. Future studies of alternative dielectric materials will help to overcome these limits.; For a programmable thermal switch-based architecture, heat transfer parameters of mercury droplets were studied in both steady-state and transient conditions, in which the cooling of hot-spots was shown to be dependent on parameters such as effective cooling areas and the number of conductive vias. These parameters are manipulated on-the-fly to create a non-uniform thermal conductance layer corresponding to the thermal profile of the IC substrate. The ability to manipulate a dense array of these liquid-metal droplets in response to changing heat-flux densities allows for a completely self-automated adaptive cooling system.; The work presented in this thesis addresses the fundamental design challenges in developing an adaptive cooling architecture based on the digital microfluidic platform. The two cooling methods developed and characterized here demonstrate the feasibility to adaptively perform thermal management to dynamically cool hot-spots. Such an adaptive hot-spot cooling system will pave the way for new IC thermal management design strategies to perform temperature-aware cooling.
机译:热管理是集成电路(IC)设计中的关键问题。随着每一代新的IC技术的出现,功能尺寸会减小,而工作速度和封装密度则会增加。这些因素导致管芯温度升高,不利于电路性能和可靠性。此外,由于IC中空间上不均匀的热通量引起的热点可能会导致物理应力,从而进一步降低可靠性。迄今为止,已经提出了许多解决这些问题的技术,但是由于它们固有的缺乏可重新配置性,大多数技术都无法处理IC的热分布。在本文中,我们介绍了两种基于“数字微流控”平台的替代冷却架构。在流通式方法中,通过用户定义的可重新编程的流动路径和速度通过电润湿独立驱动冷却液滴。这种高水平的可重新配置性使我们能够创建一个“自适应”热点冷却模块,该模块可以直接固定在IC本身上,从而系统可以响应不断变化的热特性而即时对其进行重新配置。在可编程的热开关方法中,可以操纵液态金属液滴的阵列,从而可以选择性地将冷却装置中的任何区域从低到高或从高到低的热导率模式切换。这样,可以从热点处吸走更高的热通量,从而产生均匀的热分布。本文首先研究了数字微流体系统的温度依赖性行为。结果表明,在高温下,浸没在油中的液滴的运输变得容易。基于共面电润湿方案,设计了各种热点冷却原型,以简化制造和组装步骤。对于基于流通的系统,使用冷却原型来演示自适应冷却所需的液滴的闭环分配,传输和再循环。对于较高的质量流量和热通量密度,使用移动液滴的传热效果显着改善。然而,尽管成功证明了这种流通技术的概念证明,但鉴于当今IC器件的高热通量密度,使用当前原型的最大流量似乎不足。未来对替代电介质材料的研究将有助于克服这些限制。对于基于可编程热开关的体系结构,在稳态和瞬态条件下均研究了汞滴的传热参数,其中热点的冷却取决于有效冷却面积和数量等参数。导电通孔。这些参数是动态操作的,以创建与IC基板的热分布相对应的非均匀导热层。响应于变化的热通量密度而操纵这些液态金属液滴的致密阵列的能力允许完全自动的自适应冷却系统。本文提出的工作解决了在开发基于数字微流体平台的自适应冷却架构时的基本设计挑战。这里开发和表征的两种冷却方法证明了自适应执行热管理以动态冷却热点的可行性。这样的自适应热点冷却系统将为新的IC热管理设计策略进行温度感知冷却铺平道路。

著录项

  • 作者

    Paik, Philip Y.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:40:10

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号