首页> 外文学位 >Fluidic and polymeric integration and functionalization of optical microresonators.
【24h】

Fluidic and polymeric integration and functionalization of optical microresonators.

机译:光学微谐振器的流体和聚合物集成及功能化。

获取原文
获取原文并翻译 | 示例

摘要

Optical resonators are structures that spatially confine and temporally store light. The use of such resonators continues to permeate throughout society as improvements in their design and fabrication qualify them to fulfill an ever-increasing array of technological and scientific applications. Traditionally, resonators have primarily been used in lasers and as filters, and more recently have been utilized in other areas including chemical sensing, spontaneous emission modulation, and quantum electrodynamics experiments. In many of these applications, the functionalities of the resonators are solely derived from the geometry and material composition of the resonators. The central theme of this thesis is the investigation of increasing a resonator's functionality through its integration with fluidic and polymeric materials.; The thesis begins with an investigation of integrating silicon ring resonators with electro-optic polymer and liquid crystal. First, we electrically tune the rings' resonances using electrodes and the reorientation of liquid crystal surrounding the resonators. We then take the knowledge and experience acquired from these experiments and pursue the functionalization of photonic crystal laser resonators, a relatively new class of microresonators constructed from a thin slab of InGaAsP quantum well material with a periodic array of holes penetrating the slab. To this end, we first infiltrate the porous resonators with liquid crystal and construct liquid crystal cells around the devices. We are then able to tune the lasing wavelengths by reorienting the liquid crystal with a voltage applied across the cell. Next, we devise a new photonic crystal cavity designed to optimally interact with infiltrated birefringent materials, by supporting two orthogonally polarized high-Q modes. Again, we infiltrate the cavity with liquid crystal, but now optically control the liquid crystal orientation with a photoaddressable polymer film. By doing so we are able to realize a fundamentally new laser tuning method by reversibly Q-switching the resonator's lasing mode between the two cavity modes and thereby controlling the laser's emission wavelength and polarization. The successful fluidic and polymeric integration with optical resonators presented in this thesis demonstrates some of the possible synergies that can be obtained with such integration and suggests that further enhancements in resonator functionality is possible.
机译:光学谐振器是在空间上限制和暂时存储光的结构。随着谐振器的设计和制造上的改进,它们已经可以满足整个社会不断增长的技术和科学应用需求。传统上,谐振器主要用于激光器和滤波器,最近已用于其他领域,包括化学传感,自发发射调制和量子电动力学实验。在许多这些应用中,谐振器的功能仅源自谐振器的几何形状和材料组成。本文的中心主题是研究通过与流体和聚合物材料集成来提高谐振器的功能。本文首先研究将硅环谐振器与电光聚合物和液晶集成在一起。首先,我们使用电极和共振器周围液晶的重新取向来电调整环的共振。然后,我们将从这些实验中获得的知识和经验用于光子晶体激光谐振器的功能化,光子晶体激光谐振器是一类相对较新的微谐振器,它是由一个薄的InGaAsP量子阱材料平板和一个周期性的贯穿该平板的孔阵列构成的。为此,我们首先将液晶渗透到多孔谐振器中,并在器件周围构造液晶单元。然后,我们可以通过在液晶盒上施加电压来重新定向液晶,从而调整激光波长。接下来,我们设计一种新的光子晶体腔,通过支持两种正交偏振的高Q模式,该腔设计成与渗透的双折射材料最佳相互作用。同样,我们用液晶渗透腔体,但现在用可光寻址的聚合物膜光学控制液晶的取向。通过这样做,我们能够通过在两个腔模之间可逆地Q切换谐振器的激射模式,从而控制激光器的发射波长和偏振,从而实现一种根本上全新的激光调谐方法。本论文提出的与光谐振器的成功的流体和聚合物集成证明了通过这种集成可以获得的一些可能的协同作用,并表明可以进一步增强谐振器的功能。

著录项

  • 作者

    Maune, Brett.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号