首页> 外文学位 >Doping and defect structure of mixed-conducting ceramics for gas separation.
【24h】

Doping and defect structure of mixed-conducting ceramics for gas separation.

机译:用于气体分离的混合导电陶瓷的掺杂和缺陷结构。

获取原文
获取原文并翻译 | 示例

摘要

A worldwide energy crisis and increasing environmental concerns are strong incentives for using hydrogen as a sustainable and clean energy source. "Hydrogen economy" has been around since 1970s, but it started to look practicable only in recent years. The trend in the future is to switch from using hydrogen as the basic raw material in the chemical industry to the energy carrier in the transportation and distributed energy industries. To meet the expected rising demand, hydrogen has to be generated in a more cost-effective manner. As one of the most important operation units in the hydrogen production, a high performance hydrogen separation membrane system is essential to the coming hydrogen economy.; The project of hydrogen separation membrane based on Mixed ionic and electronic conductor (MIEC) composite was initiated by DoE years ago, and the MIEC membrane has been developed in Argonne National Laboratory (ANL) for several years. The goal at ANL is to develop a dense, ceramic-based MIEC membrane that is highly selective, chemical stable in practical environments at operative temperatures up to ≈900°C, and can separate hydrogen from mixed gases at commercially significant fluxes under industrially relevant operating conditions, without the need for electrodes or electrical circuitry.; The effort at ANL initially focused on BCY20 (BaCe0.8Y 0.2O3). BCY20 forms the matrix of ANL-1a and -2a ceramic-metal composite membranes (40-50 vol.% of a metal is dispersed in a ceramic matrix) and its bulk transport properties, including ionic transfer number, ionic and electronic conductivity, and chemical and mechanical stability have been systematically studied. However, exposure to CO2 and H2O-containing atmospheres, as would be present in a practical environment, will degrade the material as it reacts to form insulating barium carbonate (BaCO3 ) and cerium oxide (CeO2). This decomposition greatly limits its applicability in hydrogen separation, despite the promising properties of this material.; The combination of high proton conductivity and good chemical stability, which is a prerequisite for the application of MIEC compounds, is generally considered to be a key problem. In choosing good materials for H2 separation membrane, defect structure, and hence transport properties of perovskites, which are strongly influenced by the oxidation states and ionic radii of dopants, are very critical. Therefore it is the goal of this research to gain a fundamental understanding of the correlation between the defect chemistry and the properties of perovskite structure materials, so as to allow the engineering of these materials with the desired properties for the application in industry, such as developing membranes of mixed conductors which have good stability in practical atmospheres.; With respect to thermodynamic stability, water solubility limit and mobility of protonic defects the occupation of the A-site does not require much of a compromise. Except for the stability with acidic gases, which is almost independent of the choice of the A-cation, all relevant properties are superior for an A-site occupation by the big barium compared to other alkaline earth ions.; Addition of acceptor dopants into ABO3 is crucial to proton uptake. A high concentration of protonic defects requires a high acceptor dopants concentration. Dopants are incorporated into the lattice at either A or B-sites with the respective creation of charge-compensating oxygen vacancies and A-site vacancies. Smaller dopants preferentially substitute at the B-site, while larger cations substitute at the A-site. Partial occupation of the A sublattice can explain the low uptake of protons. The yttrium seems to be perfect acceptor dopant choice for BaZrO3, BaCeO3-based materials, and both the proton mobility and the thermodynamics of hydration are practically unchanged for dopant levels up to 20% Y.; The choice of the B-cation, however, requires some compromising. It should be of
机译:全球范围内的能源危机和日益严重的环境问题是将氢用作可持续和清洁能源的强烈动力。 “氢经济”自1970年代就出现了,但是直到最近几年才开始变得可行。未来的趋势是从使用氢作为化学工业的基本原料转​​变为运输和分布式能源工业中的能源载体。为了满足预期的不断增长的需求,必须以更具成本效益的方式生产氢气。作为制氢中最重要的操作单元之一,高性能的氢分离膜系统对于即将到来的氢经济至关重要。美国能源部几年前就启动了基于混合离子和电子导体(MIEC)复合材料的氢分离膜项目,并且MIEC膜已经在阿贡国家实验室(ANL)研发了几年。 ANL的目标是开发一种致密的,基于陶瓷的MIEC膜,该膜在实际环境中在高达900°C的工作温度下具有很高的选择性,化学稳定性,并且可以在工业上适用的情况下以商业上显着的通量从混合气体中分离出氢气操作条件,不需要电极或电路。 ANL的工作最初集中在BCY20(BaCe0.8Y 0.2O3)上。 BCY20形成ANL-1a和-2a陶瓷-金属复合膜的基质(40-50%(体积)的金属分散在陶​​瓷基质中)及其整体传输特性,包括离子转移数,离子和电子电导率,以及化学和机械稳定性已得到系统研究。但是,暴露在实际环境中会出现的含有CO2和H2O的气氛中,会在材料反应形成绝缘碳酸钡(BaCO3)和氧化铈(CeO2)时降解材料。尽管这种材料具有令人满意的性能,但这种分解极大地限制了其在氢分离中的适用性。通常将高质子传导性和良好的化学稳定性结合起来,这是应用MIEC化合物的先决条件,这是一个关键问题。在选择用于H 2分离膜的良好材料时,钙钛矿的缺陷结构以及因此受到掺杂物的氧化态和离子半径强烈影响的钙钛矿的传输性能至关重要。因此,本研究的目的是对缺陷化学与钙钛矿结构材料的性能之间的相关性有一个基本的了解,从而使这些材料的工程化具有工业应用中所需的性能,例如开发在实际环境中具有良好稳定性的混合导体膜;关于热力学稳定性,水溶性极限和质子缺陷的迁移率,对A位的占据并不需要太多的折衷。除了在酸性气体中的稳定性几乎与A阳离子的选择无关外,与其他碱土金属离子相比,大钡对A场所的所有相关性能均优于后者。在ABO3中添加受体掺杂剂对于质子吸收至关重要。高浓度的质子缺陷需要高浓度的受体掺杂剂。在A或B位将掺杂剂掺入晶格中,并分别产生电荷补偿的氧空位和A位空位。较小的掺杂剂优先在B位置取代,而较大的阳离子则在A位置代替。 A亚晶格的部分占据可以解释质子的低吸收。钇似乎是BaZrO3,BaCeO3基材料的理想受体掺杂剂选择,并且对于高达20%Y的掺杂剂,质子迁移率和水合热力学几乎都没有改变。然而,B阳离子的选择需要一些折衷。应该是

著录项

  • 作者

    Zuo, Chendong.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Chemistry Inorganic.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 p.568
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号