首页> 外文学位 >First-principles study of iron and (iron,nickel) alloys up to core pressures.
【24h】

First-principles study of iron and (iron,nickel) alloys up to core pressures.

机译:铁和(铁,镍)合金直至核心压力的第一性原理研究。

获取原文
获取原文并翻译 | 示例

摘要

The elasticity of Fe and (Fe,Ni) alloys are investigated up to core pressures using Density Functional Theory. At pressures below 52 GPa an uncharacteristically large discrepancy exists between theoretically predicted and experimentally observed properties of elemental iron. The differences in compressibility and of most elastic contants can be reduced significantly by introducing an anti-ferromagnetic spin arrangement. This spin arrangement induces significant lattice distortions that change the crystal symmetry from hexagonal to orthorhombic. The lattice distortions are small and decrease rapidly with increasing pressure and thus may be difficult to observe experimentally. Available experiments that explore the elasticity of iron at high pressure rely on scaling between vibrational frequencies and an elastic constant (C44). This relationship was tested and it was found that it holds to within 4%. Therefore the remaining differences between theory and experiment for elemental iron cannot be explained by flawed scaling.;Iron-nickel alloys with up to 12.5 at%, encompassing likely nickel concentrations in the Earth's core, were investigated up to core pressures. The effect of Nickel on compressibility, density, and cell parameters are small at least up to 12.5 at% Ni. The only elastic constant that is significantly affected by nickel content is the shear elastic constant C44, it is lowered by 16% at an inner core pressures of 340 GPa. This effect leads to a lowering of the isotropic wavespeeds as nickel content increases. The knowledge of the complete elastic constant tensor affords to address the effect of nickel on seismic observables such as the compressional and shear-wave velocity anisotropy. Possible implications for the chemical composition of the inner core are discussed.
机译:利用密度泛函理论研究了铁和(Fe,Ni)合金的弹性,直至达到核心压力。在低于52 GPa的压力下,元素铁的理论预测值和实验观察到的特性之间通常存在很大的差异。通过引入反铁磁自旋排列,可以显着减小可压缩性和大多数弹性体之间的差异。这种自旋排列会引起明显的晶格畸变,从而使晶体对称性从六边形变为正交晶体。晶格畸变很小并且随着压力的增加而迅速减小,因此可能很难通过实验观察到。探索铁在高压下的弹性的可用实验依赖于振动频率和弹性常数(C44)之间的换算。测试了这种关系,发现它保持在4%以内。因此,元素铁的理论与实验之间的剩余差异无法用有缺陷的结垢来解释。研究了高达12.5 at%的铁-镍合金,其中包括地心中可能存在的镍浓度,直至达到铁心压力。镍对可压缩性,密度和泡孔参数的影响很小,至少不超过12.5 at%Ni。受镍含量影响最大的唯一弹性常数是剪切弹性常数C44,在340 GPa的内芯压力下它会降低16%。随着镍含量的增加,该效应导致各向同性波速降低。完整弹性常数张量的知识可以解决镍对地震可观测值(例如,压缩波和剪切波速度各向异性)的影响。讨论了内核化学成分的可能含义。

著录项

  • 作者

    Eimer, Benjamin C.;

  • 作者单位

    New Mexico State University.;

  • 授予单位 New Mexico State University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号