首页> 外文学位 >Electronic and photonic band engineering for novel optoelectronic and nanophotonic devices.
【24h】

Electronic and photonic band engineering for novel optoelectronic and nanophotonic devices.

机译:用于新型光电和纳米光子器件的电子和光子带工程。

获取原文
获取原文并翻译 | 示例

摘要

Fundamental electrical and optical properties of strained wurtzite InGaN/GaN-based quantum-well structures are calculated based on the Rashba-Sheka-Pikus (RSP) Hamiltonian in the vicinity of the Gamma point since the simple parabolic model is very poor to fit the valence band structures of the nitride wurtzite materials. The model includes the spontaneous and the strain-induced piezoelectric polarization, as well as the crystal-field and the spin-orbit interactions and the strain effect that are already included in the RSP Hamiltonian. The propagation method is used for the QW structure calculation and the nitride parameters were optimized based on the up-to-date experimental results and the theoretical calculations. It is found that the strain-induced piezoelectric field significantly alters the subband structure and determines the output intensity of the nitride quantum well light emitting diodes. The calculations are compared with the available experimental data of the nitride light emitting diodes (LEDs) and a good match exists for low In composition LEDs. For the case with high In composition (> 0.2), the comparison between the calculations and the experiments supports the possibility of strain relaxation in the quantum well. The resulting model can accurately investigate the optoelectronic properties of nitride based QW LEDs over a wide range of In composition ( 0.5). Based on the understanding of the polarization fields, a design that uses AlInGaN as the quantum barrier is proposed to control the strain, and thus the piezoelectric polarization field. So an efficient red emission can be realized, which is hard to achieve if GaN is used as the barrier. In the proposed design, three different InGaN/AlInGaN QW structures emit red, green and blue light with similar intensities. Also, to achieve high efficiency, important factors related to the oscillator strength are discussed in detail.; Since the initial predictions, photonic crystals (PCs) have offered new opportunities for realizing photonic integrated circuits with many important applications including optical communication and display. The feasibility of an electrically programmable PC is investigated theoretically based on the metal-insulator transition of vanadium dioxide (VO2). We propose a slab structure based on VO2 whose dielectric properties can be modulated by selectively applying the bias on a lithographically defined array of gate electrodes to induce the phase transition. (Abstract shortened by UMI.)
机译:基于简单的抛物线模型很难拟合价态,基于伽玛点附近的Rashba-Sheka-Pikus(RSP)哈密顿量,计算了应变纤锌矿InGaN / GaN基量子阱结构的基本电学和光学性质氮化物纤锌矿材料的能带结构。该模型包括自发的和应变诱发的压电极化,以及RSP哈密顿量中已包含的晶体场和自旋轨道相互作用以及应变效应。 QW结构的计算采用了传播方法,并根据最新的实验结果和理论计算对氮化物参数进行了优化。发现应变感应的压电场显着改变了子带结构并确定了氮化物量子阱发光二极管的输出强度。将计算结果与氮化物发光二极管(LED)的可用实验数据进行比较,并且对于低In成分的LED存在良好的匹配。对于具有高In组成(> 0.2)的情况,计算与实验之间的比较支持了量子阱中应变弛豫的可能性。生成的模型可以在广泛的In组成(<0.5)范围内准确地研究基于氮化物的QW LED的光电性能。基于对极化场的理解,提出了一种使用AlInGaN作为量子势垒的设计来控制应变,从而控制压电极化场。因此,可以实现有效的红色发射,如果将GaN用作势垒,则很难实现。在所提出的设计中,三种不同的InGaN / AlInGaN QW结构发出具有相似强度的红,绿和蓝光。另外,为了获得高效率,详细讨论了与振荡器强度有关的重要因素。自最初的预测以来,光子晶体(PC)为实现具有许多重要应用(包括光学通信和显示)的光子集成电路提供了新的机会。理论上基于二氧化钒(VO2)的金属-绝缘体转变,研究了电可编程PC的可行性。我们提出了一种基于VO2的平板结构,可以通过在光刻定义的栅电极阵列上选择性施加偏压以诱导相变来调节其介电性能。 (摘要由UMI缩短。)

著录项

  • 作者

    Xiao, Dong.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Electronics and Electrical.; Physics Optics.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号