首页> 外文学位 >Multivalent interactions based on supramolecular self-assembly and peptide-labeled quantum dots for imaging GPCRs.
【24h】

Multivalent interactions based on supramolecular self-assembly and peptide-labeled quantum dots for imaging GPCRs.

机译:基于超分子自组装和肽标记的量子点的多价相互作用,用于GPCR成像。

获取原文
获取原文并翻译 | 示例

摘要

Multivalent interactions are very common in nature, such as influenza virus infecting epithelial cells, clearance of pathogens by antibody-mediated attachment to macrophages, etc. In an effort to mimic nature, we utilized a bottom-up approach to develop various multivalent self-assembling systems based on coiled-coil peptides. We synthesized several pairs of coiled-coil peptides, also called leucine-zippers, and tethered them to PAMAM dendrimers to form leucine-zipper dendrimers (LZDs). We conjugated natural leucine-zipper peptides Fos/Jun to the PAMAM dendrimer to make D0Fos4 and D0Jun4, and studied the interactions between these LZDs and their cognate peptide target, either Jun or Fos. Our experiments showed that the LZD D 0Fos4 can non-covalently assemble four copies of Jun, and that this approach can be further used as a new method for the rapid non-covalently assembling of multimeric ligands. We also pursued the multivalent target of GPCRs with a leucine-zipper assembly, and surprisingly found the Fos/Jun complex can potentially be used as a molecular switch to target GPCRs with controlled ligand activity. In a related project for bio-material design based on self-assembly of LZDs, we synthesized a different pair of LZDs, D0Ez4 and D0Kz4, and established that they can assemble at neutral pH to form helical fibrils which display higher order self-organized structures, providing a new methodology for bio-material design.; In another effort for studying multivalent interactions, we covalently conjugated three copies of the F23, mini-protein that binds the HIV-1 capsid protein, to a trimesic acid and obtained a trivalent inhibitor, Tri-F23. This trivalent inhibitor showed enhanced binding in ELISA against gp120, but was not significantly more effective preventing HIV entry. This methodology provides a new strategy for developing multivalent inhibitors for preventing HIV-1 infection at the entry level.; In a related area, we are developing imaging agents based on photoluminescent nanoparticles (quantum dots) that can detect GPCRs on whole cells and at the single molecule level. To this end, a new method was developed for biocompatible amphphilic polymers to coat quantum dots. This amphiphilic polymer facilitates rapid quantum dot conjugation to any ligand that has a free thiol or engineered cysteine. Several GPCR targeted peptides have been utilized for imaging receptors on whole cells and as single molecules. These efforts will guide the rational design of multivalent ligands for targeting GPCRs and other cell surface proteins.
机译:多价相互作用在自然界中非常常见,例如流感病毒感染上皮细胞,通过抗体介导的巨噬细胞附着清除病原体等。为了模仿自然,我们采用了一种自下而上的方法来开发各种多价自组装体基于卷曲螺旋肽的系统我们合成了几对卷曲螺旋肽,也称为亮氨酸拉链,并将它们束缚到PAMAM树枝状聚合物上,形成了亮氨酸拉链树枝状聚合物(LZD)。我们将天然亮氨酸拉链肽Fos / Jun与PAMAM树状大分子缀合,制成D0Fos4和D0Jun4,并研究了这些LZD与它们的同源肽靶点Jun或Fos之间的相互作用。我们的实验表明,LZD D 0Fos4可以非共价组装4个拷贝的Jun,并且该方法可以进一步用作快速非共价组装多聚体配体的新方法。我们还使用亮氨酸-拉链装配追求GPCR的多价靶标,并且令人惊讶地发现,Fos / Jun复合物可潜在地用作分子开关,以靶向具有受控配体活性的GPCR。在基于LZD自组装的生物材料设计的相关项目中,我们合成了另一对LZD,D0Ez4和D0Kz4,并确定它们可以在中性pH下组装以形成显示更高阶自组织结构的螺旋原纤维,提供了一种新的生物材料设计方法。在研究多价相互作用的另一项努力中,我们将三份拷贝的F23(与HIV-1衣壳蛋白结合的微型蛋白)共价键合至均苯三酸,并获得三价抑制剂Tri-F23。这种三价抑制剂在ELISA中显示出对gp120的增强结合,但在预防HIV进入方面却没有明显更有效。该方法为开发用于在入门级预防HIV-1感染的多价抑制剂提供了新策略。在相关领域,我们正在开发基于光致发光纳米粒子(量子点)的显像剂,它们可以检测整个细胞和单个分子水平的GPCR。为此,开发了一种用于生物相容性两亲聚合物涂层量子点的新方法。这种两亲聚合物有助于快速量子点与具有游离硫醇或工程化半胱氨酸的任何配体结合。几种GPCR靶向肽已用于成像全细胞和单分子受体。这些努力将指导针对GPCR和其他细胞表面蛋白的多价配体的合理设计。

著录项

  • 作者

    Zhou, Min.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 354 p.
  • 总页数 354
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 有机化学;
  • 关键词

  • 入库时间 2022-08-17 11:40:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号