首页> 外文学位 >Dynamic models of multi-trophic interactions in microbial food webs.
【24h】

Dynamic models of multi-trophic interactions in microbial food webs.

机译:微生物食物网中多营养相互作用的动力学模型。

获取原文
获取原文并翻译 | 示例

摘要

Completely mechanistic mathematical models have been developed to examine the dynamic behavior of bioavailability-limited substrate utilization in a competitive microbial system experiencing protozoan predation pressure in continuously mixed open-flow (CMFR) and batch reactors to examine the effects of various processes on the bioremediation process. Mechanistic processes incorporated into the models include: (1) growth inhibition of one bacterial species, (2) selective predation by protozoa using a novel "contact-complex" formation mechanism, (3) adoption of defense mechanisms by bacteria against predation, (4) incorporation of spatial refuge provided by sediment particles, (5) heterotrophic consumption of non-living organic carbon exudates produced by bacteria and protozoa and (6) bioavailability limited microbial substrate utilization. Sensitivity analyses were performed by simulation of the multi-parameter non-steady state models to focus research on the parameters that affect the overall process of bioremediation most significantly. The results of the simulations demonstrate that growth inhibition, selective predation by protozoa and the adoption of defense mechanisms all allow the two prey species and predator to co-exist in the system resulting in enhanced substrate removal. The biokinetic parameters that control the overall substrate utilization rate are dilution rate (CMFR only), prey and predator endogenous decay rate and the predator growth rate. Also, the CMFR is more dynamic compared to the batch reactor system. The results suggest that a more "biodiverse" microbial community enhances the bioremediation process. In addition, abiotic studies were performed to better understand bioavailability limitations and the role pore transport plays in the bioremediation process using naphthalene and phenanthrene in low organic carbon ( foc) engineered particles. The results indicate that sorption non-linearity does not significantly affect bioavailability of the substrate (assuming either local equilibrium or first order micropore domain resistance for intra-particle pore transport) in low foc geosorbents (such as in the test system or aquifer material). In contrast, in high foc geosorbents (such as surface soils and sediments), sorption non-linearity will result in greatly decreased bioavailability and much greater remediation time scales. These results help us understand how various model parameters and bioavailability limitations affect remediation outcomes, and hopefully leading towards better management of the contaminated soils and sediments.
机译:已开发出完全机械的数学模型,以研究在竞争性微生物系统中生物活性受限的底物利用的动态行为,该微生物系统在连续混合开放流(CMFR)和分批反应器中经历原生动物的捕食压力,以检查各种工艺对生物修复工艺的影响。纳入模型的机械过程包括:(1)抑制一种细菌的生长,(2)原生动物使用新型“接触复合物”形成机制进行的选择性捕食,(3)细菌对捕食的防御机制的采用,(4 )纳入由沉积物颗粒提供的空间避难所,(5)细菌和原生动物产生的非生命有机碳渗出物的异养消耗,以及(6)生物利用度限制了微生物底物的利用。通过模拟多参数非稳态模型进行敏感性分析,以集中研究对生物修复的整个过程影响最大的参数。仿真结果表明,生长抑制,原生动物的选择性捕食以及防御机制的采用,都使两种猎物和捕食者共存于系统中,从而提高了底物去除率。控制总体底物利用率的生物动力学参数是稀释率(仅CMFR),猎物和捕食者的内源性衰减率以及捕食者的生长速度。而且,与间歇反应器系统相比,CMFR具有更高的动态性。结果表明,更具“生物多样性”的微生物群落可增强生物修复过程。此外,进行了非生物研究,以更好地了解生物利用度的局限性以及在低有机碳(foc)工程颗粒中使用萘和菲进行的孔传输在生物修复过程中的作用。结果表明,吸附非线性在低foc吸附剂中(例如在测试系统或含水层材料中)不会显着影响底物的生物利用度(假定局部平衡或一级微孔域电阻对于颗粒内孔隙传输)。相反,在高FOC地吸附剂(例如表层土壤和沉积物)中,吸附非线性会导致生物利用度大大降低,并且修复时间长得多。这些结果有助于我们了解各种模型参数和生物利用度限制如何影响修复效果,并有望导致对污染土壤和沉积物的更好管理。

著录项

  • 作者

    Mittal, Menka.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Engineering Environmental.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 320 p.
  • 总页数 320
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号