首页> 外文学位 >Electrostatic force microscopy study of the charge and polarizability of semiconducting and metallic nanocrystals.
【24h】

Electrostatic force microscopy study of the charge and polarizability of semiconducting and metallic nanocrystals.

机译:静电力显微镜研究半导体和金属纳米晶体的电荷和极化性。

获取原文
获取原文并翻译 | 示例

摘要

This thesis addresses the fundamental charge and polarizability properties of individual nanocrystals. The first part focuses on the theory of the electrostatic force microscope and how this method is used to understand the properties of these small particles. The microscope scans a sample using a conductive tip and both the surface topography and the electrostatic force gradients on the surface are mapped out simultaneously. This data is then interpreted using appropriate electrostatic models which are developed in order to account for the magnitude and nature of the measured fields. The tip is modeled as a cone with a sphere at the end to correctly describe the tip-surface capacitance, and each probe is independently calibrated to determine its specific geometric parameters. To determine the nanocrystal charge, the total force experienced by the tip is modeled as the force due to a charge within a polarizable sphere, plus its image acting on the sphere and the cone. Nanocrystal polarizability, due to the AC polarization of the particle, is modeled using an expression for the potential due to a polarized dielectric sphere in the field of an external point charge located at some distance from the sphere center.;Based on our understanding of the electrostatic fields measured with the EFM, in the next part we measure the charge and polarizability of 12 nm PbSe nanocrystals on n- and p-type silicon with a 2 nm thermal oxide layer. Individual nanocrystals show a dielectric constant of >100. In ambient light the nanocrystals generate static electric fields of magnitudes too weak to be caused by a full elementary charge. These nanocrystals are statically polarized by surface electric fields generated by fixed charges in the oxide substrate. We model this effect quantitatively and assign charge locations in the oxide. Upon 442 nm photoexcitation we observe some of the nanocrystals (∼35%) photoionize and slowly relax overnight back to their initial states.;We next explore the effect of surface ligands on nanocrystals charge using a variety of semiconducting and metallic nanocrystals. This is done to address recent reports in the literature that provide evidence of quantized metal and semiconducting nanocrystalline charge in solution. We measure the charge of a variety of nanocrystals on a highly oriented pyrolytic graphite (HOPG) surface and use ligand exchange chemistry to vary this charge. We find that nanocrystal charge is influenced by the passivating layer in addition to charge transfer effects with the HOPG substrate.;In the final chapter, we investigate the EFM charge signal of bare nanoparticles on HOPG. When two different metals are brought into contact, there is a net charge flow to compensate for the difference in work functions between the two materials. Using an electrochemical technique, we deposit surfactant-free, nano-sized metal particles (Au, Ag, Pd, Pt and In) of varying work functions on HOPG and measure the EFM signal. We observe a negative static field signal for all metal particles on HOPG. This was attributed to charge transfer effects, where the relative magnitude of the static field signal implied a higher work function of the metals compared to HOPG and shows a large bias in the reported literature values of the bulk metal work function.
机译:本论文研究了单个纳米晶体的基本电荷和极化性。第一部分着重于静电力显微镜的理论以及如何使用这种方法来理解这些小颗粒的特性。显微镜使用导电尖端扫描样品,并且同时绘制出表面形貌和表面上的静电力梯度。然后使用适当的静电模型解释该数据,该静电模型被开发以便考虑被测场的大小和性质。尖端被建模为圆锥体,在其末端带有球体,以正确描述尖端表面的电容,并且每个探头都经过独立校准以确定其特定的几何参数。为了确定纳米晶体电荷,将尖端承受的总力建模为可极化球体中的电荷所产生的力,加上其作用在球体和圆锥体上的图像。由于粒子的AC极化,因此纳米晶体的极化率是通过使用位于距球体中心一定距离的外部点电荷场中极化的介电球所产生的电势表达式来建模的;用EFM测量的静电场,在下一部分中,我们将测量具有2 nm热氧化物层的n型和p型硅上的12 nm PbSe纳米晶体的电荷和极化率。单个纳米晶体的介电​​常数> 100。在环境光下,纳米晶体产生的静电电场强度太弱,无法由完全的基本电荷引起。这些纳米晶体被氧化物基板中固定电荷产生的表面电场静极化。我们对该效应进行定量建模,并指定氧化物中的电荷位置。在442 nm的光激发下,我们观察到一些纳米晶体(约35%)被电离并缓慢弛豫过夜回到其初始状态。接下来,我们使用各种半导体和金属纳米晶体探索表面配体对纳米晶体电荷的影响。这样做是为了解决文献中的最新报告,这些报告提供了溶液中定量的金属和半导体纳米晶电荷的证据。我们测量高度取向的热解石墨(HOPG)表面上各种纳米晶体的电荷,并使用配体交换化学方法改变​​这种电荷。我们发现,除了HOPG衬底上的电荷转移效应之外,纳米晶体电荷还受钝化层的影响。在最后一章中,我们研究了裸颗粒在HOPG上的EFM电荷信号。当两种不同的金属接触时,会有净电荷流来补偿两种材料之间功函数的差异。使用电化学技术,我们在HOPG上沉积了具有不同功函数的无表面活性剂的纳米级金属颗粒(Au,Ag,Pd,Pt和In),并测量了EFM信号。我们观察到HOPG上所有金属颗粒的负静电场信号。这归因于电荷转移效应,其中与HOPG相比,静电场信号的相对幅度意味着金属的功函数较高,并且在报道的大宗金属功函数的文献值中显示出较大的偏差。

著录项

  • 作者

    Ben-Porat, Chaya H.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Chemistry Physical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 95 p.
  • 总页数 95
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号