首页> 外文学位 >Numerical simulation of arc welding process and its application.
【24h】

Numerical simulation of arc welding process and its application.

机译:电弧焊接过程的数值模拟及其应用。

获取原文
获取原文并翻译 | 示例

摘要

The numerical simulation of arc welding process provides insight and information not available from experiments for process development, but has not been used in practical welding applications. In order to demonstrate its usefulness in welding applications, a three-dimensional numerical simulation of the pulsed gas metal arc welding (P-GMAW) process using Volume of Fluid technique was developed based on mathematical models. It was validated by the comparison of weld deposit geometry, transient radius, and temperature history. The physical mechanism of weld bead hump formation, which has not been clearly understood, and a suppression technique were explored based on heat and fluid flow profiles and solid/liquid interface contours obtained from the numerical simulation of P-GMAW and hybrid (P-GMAW + laser) processes.;The mechanism of hump formation was investigated by using the numerical simulation. According to simulation results of P-GMAW, traveling at a high travel speed, the events leading to the formation of a humped bead were identified. In the initial stage of hump formation, a thin, elongated, molten bead was formed and then pinched due to capillary instability, resulting in a dramatically reduced cross section of the molten weld bead. Solidification then divided the weld pool into front and back sections, guaranteeing hump formation.;The numerical simulation was also used to demonstrate the suppression of hump formation by hybrid process. Simulation results of hybrid process showed that a defocused laser beam located in front of the P-GMA weld pool could suppress hump formation. A shallow "skin" melt produced by the defocused laser beam, with sufficient beam intensity and beam radius, promoted a wider weld bead with a smaller internal contact angle, which was less susceptible to capillary instability of weld metal deposit.
机译:弧焊过程的数值模拟提供了洞察力和信息,这些信息是过程开发中无法从实验中获得的,但尚未在实际的焊接应用中使用。为了证明其在焊接应用中的实用性,在数学模型的基础上,开发了利用流体体积技术对脉冲气体金属电弧焊(P-GMAW)过程进行三维数值模拟的方法。通过比较焊缝的几何形状,瞬态半径和温度历史来验证了这一点。基于P-GMAW和混合动力(P-GMAW)数值模拟获得的热量和流体流动轮廓以及固/液界面轮廓,研究了尚未明确理解的焊缝驼峰形成的物理机理,并探索了一种抑制技术。 +激光)过程。;通过数值模拟研究了驼峰形成的机理。根据P-GMAW的模拟结果,以高行进速度行进,识别出导致驼峰状珠形成的事件。在隆起形成的初始阶段,形成了细长的熔融焊道,然后由于毛细管的不稳定性而被挤压,导致熔融焊道的横截面大大减小。凝固后将焊缝池分为前后两部分,以确保形成隆起。数值模拟还证明了混合过程对隆起的抑制作用。混合过程的仿真结果表明,位于P-GMA焊池前面的散焦激光束可以抑制峰形成。由散焦的激光束产生的浅“表皮”熔体,具有足够的光束强度和光束半径,可以促进焊缝更宽,内部接触角更小,从而更不易受到焊缝金属沉积物毛细管不稳定性的影响。

著录项

  • 作者

    Cho, Min Hyun.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:40:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号