首页> 外文学位 >Mechanochemistry of ATP binding cassettes and the F1 model for mechanical ATPases at large.
【24h】

Mechanochemistry of ATP binding cassettes and the F1 model for mechanical ATPases at large.

机译:ATP结合盒的机械化学和机械ATPase的F1模型在很大程度上。

获取原文
获取原文并翻译 | 示例

摘要

This thesis explores the mechanochemical properties and biological contexts of the ubiquitous ATP binding cassette (ABC) transporter superfamily of ATPases. Members of this family fall under the broader classification of proteins that are structurally related to the F1 component of ATP synthase. Chapter I reviews the thermodynamic and structural properties of these F1 related proteins. F1 ATP synthase is a well studied mechanoenzyme that provides a clear archetype for how the free energy changes associated with the binding and hydrolysis of ATP are coupled to protein conformational changes and the performance of mechanical work. The mechanochemical features of F 1 are clearly seen in other structurally related and unrelated proteins. Analyses of these features provides a simple, yet compelling model for ATP mechanoenzymes at large. Chapter I also elucidates the key structural and functional differences between mechanical ATPases and G-proteins and sets the stage for the interpretation of ABC mechanochemistry through the model developed from F1.;Members of the ABC transporter superfamily are ubiquitous ATPases most often associated with transmembrane transport processes. Prior to the work described in this thesis, a coherent mechanism for ABC protein function did not exist that was consistent with available biochemical and structural data. At the beginning of my career in graduate school, working models for ABC transporters were all derived from data that showed that cooperative interaction of two ABC domains was necessary for transport. Circa 2000, a great deal of conflicting structural data led to wildly varied mechanisms for the cooperative interactions seen in ABC domains. My efforts as a graduate student were centered around determining the structural basis for ABC cooperativity and creating a comprehensive and biochemically correct model for ABC mechanochemistry. Using hydrolysis deficient ABC domains, I was able to obtain the first physiological dimer structure of a true ABC transporter and put forward a mechanism for ABC function that is consistent with the biochemical properties of ABC domains. The details of this structure and the mechanistic model for ABC's to which it led are found in Chapter II.;Prior to obtaining this ABC transporter structure, I had been working to obtain the structures of several ABC proteins that contain two ABC domains in a single polypeptide. My original intent in crystallizing these proteins was to observe the interactions of these proteins' tandem ABC domains in hopes that they would reflect the physiologically relevant interactions that provided the basis for ABC cooperativity. Closer examination revealed that these proteins represented an entirely distinct class of ABC proteins that occur in all organisms with no obvious connection to transmembrane transport. The exact functions of the majority of these proteins was, and still is, unknown. Chapter III represents my efforts at developing a complete structure-function picture for these proteins as had been achieved for transport related ABC proteins. Results to date suggest that the majority of these proteins serve as regulators of protein synthesis involved in responses to environmental stress. Structural data reveal that these regulators contain a novel domain ABC architecture that is likely to undergo a large clamping motion driven by coordinated ATP binding at four ABC domains. The effort to establish the connection between this unique mechanochemical feature of these proteins and their apparent role in translation is ongoing, and proposals for future experimentation are found in Chapter IV.
机译:本文探讨了普遍存在的ATP酶ATP结合盒(ABC)转运蛋白超家族的力学化学性质和生物学环境。该家族成员属于与ATP合酶F1成分结构相关的蛋白质的更广泛分类。第一章回顾了这些F1相关蛋白的热力学和结构特性。 F1 ATP合酶是一种经过充分研究的机械酶,为与ATP的结合和水解相关的自由能变化与蛋白质构象变化和机械性能的耦合提供了清晰的原型。 F 1的机械化学特征在其他结构相关和不相关的蛋白质中清晰可见。这些功能的分析为整个ATP机械酶提供了一个简单而引人注目的模型。第一章还阐明了机械ATP酶和G蛋白之间的关键结构和功能差异,并通过F1建立的模型为解释ABC机械化学奠定了基础。ABC转运蛋白超家族成员是普遍存在的ATP酶,通常与跨膜转运相关流程。在本文所述工作之前,尚不存在与可用的生物化学和结构数据一致的ABC蛋白功能的连贯机制。在我研究生院职业生涯的开始,ABC转运蛋白的工作模型都是从数据得出的,该数据表明两个ABC域的协作相互作用对于转运是必需的。大约在2000年,大量相互矛盾的结构数据导致在ABC域中看到的用于协作交互的机制千差万别。作为一名研究生,我的工作重点是确定ABC合作性的结构基础,并为ABC机械化学创建一个综合且生化正确的模型。利用水解缺陷的ABC结构域,我能够获得真正的ABC转运蛋白的第一个生理二聚体结构,并提出了与ABC结构域的生化特性相一致的ABC功能机制。该结构的详细信息及其导致的ABC的机理模型在第二章中找到。在获得此ABC转运蛋白结构之前,我一直在尝试获得几个ABC蛋白质的结构,这些蛋白质在一个单一的结构中包含两个ABC域多肽。我使这些蛋白质结晶的最初目的是观察这些蛋白质的串联ABC结构域之间的相互作用,希望它们能够反映生理相关的相互作用,从而为ABC的协同作用提供基础。仔细检查后发现,这些蛋白质代表了完全不同的一类ABC蛋白质,该蛋白质出现在所有生物中,与跨膜运输没有明显联系。这些蛋白中大多数蛋白的确切功能仍然是未知的。第三章代表了我为这些蛋白质开发完整的结构功能图所付出的努力,这已经实现了与运输相关的ABC蛋白质。迄今为止的结果表明,这些蛋白质中的大多数充当参与环境应激反应的蛋白质合成的调节剂。结构数据显示,这些调节子包含一个新颖的ABC结构域结构,该结构可能会受到在四个ABC结构域上的ATP结合驱动的大钳位运动。建立这些蛋白质独特的机械化学特征与其在翻译中的明显作用之间的联系的工作正在进行中,有关在第四章中找到未来实验的建议。

著录项

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Biology Molecular.;Biophysics General.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号